Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если B1C1=6 , AK=6 , а расстояние между прямыми BC и B1C1 равно 1.

Вниз   Решение


В турнире по теннису n участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких n возможен такой турнир?

ВверхВниз   Решение


Точки E и F являются серединами отрезков AB и CD соответственно, а прямая EF перпендикулярна прямым AB и CD . Найдите угол между скрещивающимися прямыми AB и CD , если известно, что угол ACB равен arccos , AB = 4 , CD = 6 и EF = .

ВверхВниз   Решение


Через точку A проведены две прямые: одна из них касается окружности в точке B, а другая пересекает эту окружность в точках C и D так, что точка C лежит на отрезке AD. Найдите AC, BC и радиус окружности, если  

ВверхВниз   Решение


В треугольнике ABC точка O является центром описанной окружности. Через вершину B проведена прямая, перпендикулярная AO, пересекающая прямую AC в точке K, а через вершину C проведена прямая, также перпендикулярная AO, пересекающая сторону AB в точке M. Найдите BC, если  BK = a,  CM = b.

ВверхВниз   Решение


Каждая из окружностей S1 , S2 и S3 касается внешним образом окружности S (в точках A1 , B1 и C1 соответственно) и двух сторон треугольника ABC (см.рис.). Докажите, что прямые AA1 , BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если B1C1=6 , AK=6 , а расстояние между прямыми BC и B1C1 равно 2.

ВверхВниз   Решение


На рисунке изображена фигура ABCD . Стороны AB , CD и AD этой фигуры– отрезки (причём AB||CD и AD CD ); BC – дуга окружности, причём любая касательная к этой дуге отсекает от фигуры трапецию или прямоугольник. Объясните, как провести касательную к дуге BC , чтобы отсекаемая фигура имела наибольшую площадь.

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 175]      



Задача 108495

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вневписанные окружности ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

Первая окружность с центром в точке A касается сторон угла KOL в точках K и L. Вторая окружность с центром в точке B касается отрезка OK, луча LK и продолжения стороны угла OL за точку O. Известно, что отношение радиуса первой окружности к радиусу второй окружности равно $ {\frac{15}{16}}$. Найдите отношение отрезков OB и OA.

Прислать комментарий     Решение


Задача 108496

Темы:   [ Окружность, вписанная в угол ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вневписанные окружности ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

Окружность с центром в точке M касается сторон угла AOB в точках A и B. Вторая окружность с центром в точке N касается отрезка OA, луча BA и продолжения стороны угла OB за точку O. Известно, что ON : OM = 5 : 13. Найдите отношение радиусов окружностей.

Прислать комментарий     Решение


Задача 110924

Темы:   [ Площадь трапеции ]
[ Экстремальные свойства (прочее) ]
[ Неравенства с площадями ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 9,10,11

На рисунке изображена фигура ABCD . Стороны AB , CD и AD этой фигуры– отрезки (причём AB||CD и AD CD ); BC – дуга окружности, причём любая касательная к этой дуге отсекает от фигуры трапецию или прямоугольник. Объясните, как провести касательную к дуге BC , чтобы отсекаемая фигура имела наибольшую площадь.
Прислать комментарий     Решение


Задача 115678

Темы:   [ Вписанный угол равен половине центрального ]
[ Признаки и свойства касательной ]
[ Вписанный угол равен половине центрального ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

В точках A и B пересечения двух окружностей касательные к этим окружностям взаимно перпендикулярны. Пусть M — произвольная точка на одной из окружностей, лежащая внутри другой окружности. Продолжим отрезки AM и BM до пересечения в точках X и Y с окружностью, содержащей M внутри себя. Докажите, что XY — диаметр этой окружности.
Прислать комментарий     Решение


Задача 110157

Темы:   [ Производная и кратные корни ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Признаки и свойства касательной ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 5
Классы: 9,10,11

Окружности σ 1 и σ 2 пересекаются в точках A и B . В точке A к σ 1 и σ 2 проведены соответственно касательные l1 и l2 . Точки T1 и T2 выбраны соответственно на окружностях σ 1 и σ 2 так, что угловые меры дуг T1A и AT2 равны (величина дуги окружности считается по часовой стрелке). Касательная t1 в точке T1 к окружности σ 1 пересекает l2 в точке M1 . Аналогично, касательная t2 в точке T2 к окружности σ 2 пересекает l1 в точке M2 . Докажите, что середины отрезков M1M2 находятся на одной прямой, не зависящей от положения точек T1 , T2 .
Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 175]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .