|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В вершинах A , B и C равностороннего треугольника ABC со стороной 1 восставлены к его плоскости перпендикуляры и на них взяты точки A1 , B1 и C1 , находящиеся по одну сторону от плоскости ABC , причём AA1 = 4 , BB1 = 5 и CC1 = 6 . Найдите объём многогранника ABCA1B1C1 . Листок календаря частично закрыт предыдущим оторванным листком (см. рисунок). Вершины A и B верхнего листка лежат на Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых. Докажите, что не существует на плоскости четырех точек A, B, C и D таких, что все треугольники ABC, BCD, CDA, DAB остроугольные. На острове проживают 1234 жителя, каждый из которых либо рыцарь (который всегда говорит правду) либо лжец (который всегда лжёт). Однажды все жители острова разбились на пары, и каждый про своего соседа по паре сказал: "Он – рыцарь!", либо "Он – лжец!". Могло ли в итоге оказаться, что тех и других фраз произнесено поровну? Докажите для положительных значений переменных неравенство Высота правильной треугольной призмы ABCA1B1C1 в 4 раза больше ребра основания. Точка D – середина ребра A1B1 , точки E и F расположены на отрезках AD и CB1 соответственно, причём AE = |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 185]
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 185] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|