Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Найдите наименьшее значение функции y = 4 cos x+15x+5 на отрезке [0;] .

Вниз   Решение


Постройте изображение параллелепипеда ABCDA1B1C1D1 , если даны изображения вершин A , B и центров граней A1B1C1D1 и CDD1C1 .

ВверхВниз   Решение


Треугольная пирамида ABCD пересекается с плоскостью P по четырёхугольнику EFGH так, что вершины E и F лежат на рёбрах AB и AC . Отношение сторон EF и EH равно 3. Известно, что плоскость P параллельна противоположным рёбрам AD и BC , отношение которых равно . Найдите отношение, в котором точка E делит ребро AB .

ВверхВниз   Решение


В ряд расположили n лампочек и зажгли некоторые из них. Каждую минуту после этого все лампочки, горевшие на прошлой минуте, гаснут, а те негоревшие лампочки, которые на прошлой минуте соседствовали ровно с одной горящей лампочкой, загораются. При каких n можно так зажечь некоторые лампочки в начале, чтобы потом в любой момент нашлась хотя бы одна горящая лампочка?

ВверхВниз   Решение


Постройте изображение параллелепипеда ABCDA1B1C1D1 , если даны изображения точек A , B , D и A1 .

ВверхВниз   Решение


Треугольная пирамида ABCD пересекается с плоскостью P по четырёхугольнику EFGH так, что вершины E и F лежат на рёбрах AB и AC . Известно, что плоскость P параллельна рёбрам AD и BC , отношение отрезка EA к отрезку EB равно 2, рёбра AD и BC равны. Найдите отношение EF:EH .

ВверхВниз   Решение


Постройте изображение призмы ABCA1B1C1 , если даны изображения середин отрезков AA1 , BC , CC1 и A1C1 .

ВверхВниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка E на ребре AB , точка F на ребре BC и точка G на ребре CD взяты так, что AE= , BF= и CG= . Плоскость EFG пересекает прямую AD в точке H . Найдите периметр треугольника HEG .

ВверхВниз   Решение


Найдите наименьшее значение функции y = 10 cos x+17x+3 на отрезке [0;] .

ВверхВниз   Решение


Дано изображение призмы ABCA1B1C1 . Постройте изображение точки M пересечения плоскостей A1BC , AB1C и ABC1 . Пусть высота призмы равна h . Найдите расстояние от точки M до оснований призмы.

ВверхВниз   Решение


Основанием пирамиды HPQR является равносторонний треугольник PQR , сторона которого равна 2 . Боковое ребро HR перпендикулярно плоскости основания и равно 1. Найдите угол и расстояние между скрещивающимися прямыми, одна из которых проходит через точку H и середину ребра QR , а другая проходит через точку R и середину ребра PQ .

ВверхВниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка P на ребре AB , точка Q на ребре BC и точка R на ребре CD взяты так, что AP= , BQ= и CR= . Плоскость PQR пересекает прямую AD в точке S . Найдите угол между прямыми SP и SQ .

ВверхВниз   Решение


Основание пирамиды SABCD – параллелограмм ABCD . Точка M – середина ребра BC , точка K расположена на ребре SD , причём SK:KD = 2:1 . Постройте сечение пирамиды плоскостью, проходящей через точки M и K параллельно прямой AC . В каком отношении эта плоскость делит ребра SA и SC ?

ВверхВниз   Решение


Постройте изображение параллелепипеда ABCDA1B1C1D1 , если даны изображения точек A , C , B1 и D1 .

ВверхВниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка P на ребре AB , точка Q на ребре BC и точка R на ребре CD взяты так, что AP= , BQ= и CR= . Плоскость PQR пересекает прямую AD в точке S . Найдите угол между прямыми SQ и RQ .

ВверхВниз   Решение


Найдите наименьшее значение функции y = 3 cos x+9x+4 на отрезке [0;] .

ВверхВниз   Решение


Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что  f(n) – Qp(n)  делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что  g(n) = f(n)  для любого целого n?

ВверхВниз   Решение


Точка N принадлежит ребру BC параллелепипеда ABCDA1B1C1D1 , причём CN:NB = 1:2 . Постройте сечение параллелепипеда плоскостью, проходящей через точку N параллельно прямым DB и AC1 . В каком отношении эта плоскость делит диагональ A1C параллелепипеда?

ВверхВниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка E на ребре AB , точка F на ребре BC и точка G на ребре CD взяты так, что AE= , BF= и CG= . Плоскость EFG пересекает прямую AD в точке H . Найдите периметр треугольника HFG .

ВверхВниз   Решение


Постройте изображение параллелепипеда ABCDA1B1C1D1 , если даны изображения середин отрезков AB1 , BC1 , CD и A1D1 .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



Задача 111131

Темы:   [ Построения на проекционном чертеже ]
[ Параллельное проектирование ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Постройте изображение параллелепипеда ABCDA1B1C1D1 , если даны изображения точек A , B , D и A1 .
Прислать комментарий     Решение


Задача 111132

Темы:   [ Построения на проекционном чертеже ]
[ Параллельное проектирование ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Постройте изображение параллелепипеда ABCDA1B1C1D1 , если даны изображения точек A , C , B1 и D1 .
Прислать комментарий     Решение


Задача 111133

Темы:   [ Построения на проекционном чертеже ]
[ Параллельное проектирование ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Постройте изображение параллелепипеда ABCDA1B1C1D1 , если даны изображения середин отрезков AB1 , BC1 , CD и A1D1 .
Прислать комментарий     Решение


Задача 111135

Темы:   [ Построения на проекционном чертеже ]
[ Параллельное проектирование ]
[ Призма (прочее) ]
Сложность: 3
Классы: 10,11

Дано изображение призмы ABCA1B1C1 . Постройте изображение точки M пересечения плоскостей A1BC , AB1C и ABC1 . Пусть высота призмы равна h . Найдите расстояние от точки M до оснований призмы.
Прислать комментарий     Решение


Задача 86942

Темы:   [ Построения на проекционном чертеже ]
[ Параллельное проектирование (прочее) ]
Сложность: 4
Классы: 10,11


Плоскость пересекает ребра AB, AC, DC и DB тетраэдра ABCD в точках M, N, P и Q соответственно, причем AM : MB = m, AN : NC = n, DP : PC = p. Найдите отношение BQ/QD.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .