ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета? Через вершину A тетраэдра ABCD проведена плоскость, касательная к описанной около него сфере. Докажите, что линии пересечения этой плоскости с плоскостями граней ABC, ACD и ABD образуют шесть равных углов тогда и только тогда, когда AB·CD = AC·BD = AD·BC. В правильной четырёхугольной пирамиде апофема равна стороне основания. Внутри пирамиды расположены два шара: шар радиуса r касается всех боковых граней; шар радиуса 2r касается основания и двух смежных боковых граней; оба шара касаются друг друга внешним образом. Найдите апофему этой пирамиды. Четырёхугольник ABCD вписан в окружность. Перпендикуляр, опущенный из вершины C на биссектрису угла ABD, пересекает прямую AB в точке C1; перпендикуляр, опущенный из вершины B на биссектрису угла ACD, пересекает прямую CD в точке B1. Докажите, что B1C1 || AD.
Сторона основания ABC правильной треугольной пирамиды
ABCD равна 3, двугранный угол между боковой гранью
и плоскостью основания пирамиды равен arccos КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР трёхзначные числа, разные буквы обозначают различные цифры.)
В сферу радиуса Из точки A проведены к окружности две касательные (M и N – точки касания) и секущая, пересекающая эту окружность в точках B и C, а хорду MN – в точке P, AB : BC = 2 : 3. Найдите AP : PC. Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA. Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:
В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем? |
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 1225]
Назовем число зеркальным, если справа налево оно читается так же, как слева направо. Например, число 78887 – зеркальное. Найдите все зеркальные пятизначные числа, в записи которых используются только цифры 1 и 0 .
В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем?
КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР трёхзначные числа, разные буквы обозначают различные цифры.)
Очень хитрый киоскер получил для продажи несколько пачек конвертов по 100 конвертов в каждой. 10 конвертов он отсчитывает за 10 с. За сколько секунд он может отсчитать 60 конвертов? А 90?
Докажите, что для монотонно возрастающей функции f (x)
уравнения x = f (f (x)) и x = f (x) равносильны.
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 1225]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке