Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 416]
|
|
Сложность: 4 Классы: 9,10,11
|
Функция
f(
x)
определена и удовлетворяет соотношению
(x-1)f()-f(x)=x
при всех
x1
. Найдите все такие функции.
|
|
Сложность: 4 Классы: 9,10,11
|
Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не
превосходит удвоенного числа в его середине.
|
|
Сложность: 4 Классы: 9,10,11
|
Числовое множество
M , содержащее 2003 различных положительных числа, таково,
что для любых трех различных элементов
a,b,c из
M
число
a2
+bc рационально.
Докажите, что можно выбрать такое натуральное
n , что для любого
a
из
M число
a рационально.
|
|
Сложность: 4 Классы: 10,11
|
Непрерывная функция
f(
x)
такова, что для всех действительных
x выполняется неравенство:
f(
x2)
-(
f(
x))
2 . Верно ли, что функция
f(
x)
обязательно имеет точки экстремума?
|
|
Сложность: 4 Классы: 10,11
|
Квадратные трёхчлены f(x) и g(x) таковы, что
f '(x)g'(x) ≥ |f(x)| + |g(x)| при всех действительных x.
Докажите, что произведение f(x)g(x) равно квадрату некоторого трёхчлена.
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 416]