ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Вписанные окружности граней SBC , SAC и SAB треугольной
пирамиды SABC попарно пересекаются и имеют радиусы Окружность S касается окружностей S1 и S2 в точках A1 и A2. Решите задачу 5.85, а) с помощью теоремы Менелая.
а) Серединный перпендикуляр к биссектрисе AD
треугольника ABC пересекает прямую BC в точке E. Докажите,
что
BE : CE = c2 : b2.
На прямых BC, CA и AB взяты точки A1, B1 и C1,
причем точки A1, B1 и C1 лежат на одной прямой. Прямые,
симметричные прямым AA1, BB1 и CC1 относительно соответствующих
биссектрис треугольника ABC, пересекают прямые BC, CA и AB в
точках A2, B2 и C2. Докажите, что точки A2, B2 и C2 лежат
на одной прямой.
В углу шахматной доски размером n×n полей стоит ладья. При каких n, чередуя горизонтальные и вертикальные ходы, она может за n² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.) Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством: Через вершины B , C и D трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой AB , а её центр лежит на диагонали BD . Найдите периметр трапеции ABCD , если BC=9 , AD=25 . От Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя. Какое наибольшее количество клеток можно отметить на шахматной доске так, чтобы с каждой из них на любую другую отмеченную клетку можно было пройти ровно двумя ходами шахматного коня? Через терминал оплаты на мобильный телефон можно перевести деньги, при этом взимается комиссия – натуральное число процентов. Федя положил целое количество рублей на мобильный телефон, и его счет пополнился на 847 рублей. Сколько денег положил на счет Федя, если известно, что комиссия менее 30%? Можно ли в клетках таблицы 19×19 отметить несколько клеток так, чтобы во всех квадратах 10×10 было разное количество отмеченных клеток? Последовательность (an) задана условиями a1= 1000000 , an+1=n[ |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 133]
Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.
Бесконечная возрастающая арифметическая прогрессия, состоящая из натуральных чисел, содержит точный куб натурального числа.
Последовательность (an) задана условиями a1= 1000000 , an+1=n[
Существует ли такая бесконечная возрастающая арифметическая прогрессия
{an} из натуральных чисел, что произведение
an...an+9 делится на сумму
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 133]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке