ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В каждой клетке квадрата 101×101, кроме центральной,
стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает
извне в произвольную клетку на границе квадрата, после чего ездит
параллельно сторонам клеток, придерживаясь двух правил: |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 136]
Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?
В каждой клетке квадрата 101×101, кроме центральной,
стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает
извне в произвольную клетку на границе квадрата, после чего ездит
параллельно сторонам клеток, придерживаясь двух правил:
Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть l – прямая, не параллельная сторонам клеток. Для каждого отрезка I, параллельного l, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число C (зависящее только от прямой l) такое, что все полученные разности не превосходят C.
Клетки бесконечного клетчатого листа бумаги раскрасили в чёрный и белый цвета в шахматном порядке. Пусть X – треугольник площади S с вершинами в узлах сетки. Покажите, что есть такой подобный X треугольник с вершинами в узлах сетки, что площадь его белой части равна площади чёрной части и равна S.
На клетчатый лист бумаги размера 100×100 положили несколько попарно неперекрывающихся картонных равнобедренных прямоугольных треугольничков с катетом 1; каждый треугольничек занимает ровно половину одной из клеток. Оказалось, что каждый единичный отрезок сетки (включая граничные) накрыт ровно одним катетом треугольничка. Найдите наибольшее возможное число клеток, не содержащих ни одного треугольничка.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 136] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|