ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В произвольный треугольник вписана окружность. Проведём три касательные к ней, параллельно сторонам треугольника. Докажите, что периметр образовавшегося шестиугольника не превосходит периметра исходного треугольника.

   Решение

Задачи

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 769]      



Задача 111500

Темы:   [ Касающиеся окружности ]
[ Окружность, вписанная в угол ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

Угол при основании равнобедренного треугольника равен 2 arcctg 2 . Внутри треугольника расположены три окружности так, что каждая из них касается двух других окружностей и двух сторон треугольника. Найдите отношение радиусов этих окружностей.
Прислать комментарий     Решение


Задача 111620

Темы:   [ Гомотетия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 8,9

Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ .
Прислать комментарий     Решение


Задача 115279

Темы:   [ Геометрические неравенства ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

В произвольный треугольник вписана окружность. Проведём три касательные к ней, параллельно сторонам треугольника. Докажите, что периметр образовавшегося шестиугольника не превосходит периметра исходного треугольника.
Прислать комментарий     Решение


Задача 115290

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой.
Прислать комментарий     Решение


Задача 115291

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Окружности S1 и S2 касаются внешним образом в точке F . Их общая касательная l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB , касается окружности S2 в точке C и пересекает S1 в точках D и E . Докажите, что общая хорда окружностей, описанных около треугольников ABC и BDE , проходит через точку F .
Прислать комментарий     Решение


Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .