ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

AE и CD – высоты остроугольного треугольника ABC. Биссектриса угла B пересекает отрезок DE в точке F. На отрезках AE и CD взяли такие точки P и Q соответственно, что четырёхугольники ADFQ и CEPF – вписанные. Докажите, что  AP = CQ.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 512]      



Задача 111666

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На сторонах треугольника ABC как на основаниях построены равнобедренные подобные треугольники AB1C и AC1B внешним образом и BA1C внутренним образом. Докажите, что AB1A1C1 – параллелограмм.

Прислать комментарий     Решение

Задача 115287

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Даны окружность S и прямая l, не имеющие общих точек. Из точки P, движущейся по прямой l, проводятся касательные PA и PB к окружности S.
Докажите, что все хорды AB имеют общую точку.

Прислать комментарий     Решение

Задача 115325

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

AE и CD – высоты остроугольного треугольника ABC. Биссектриса угла B пересекает отрезок DE в точке F. На отрезках AE и CD взяли такие точки P и Q соответственно, что четырёхугольники ADFQ и CEPF – вписанные. Докажите, что  AP = CQ.

Прислать комментарий     Решение

Задача 115514

Темы:   [ Вспомогательные подобные треугольники ]
[ Две пары подобных треугольников ]
[ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Внутри выпуклого четырёхугольника ABCD взята такая точка P, что  ∠PBA = ∠PCD = 90°.  Точка M – середина стороны AD, причём  BM = CM.
Докажите, что  ∠PAB = ∠PDC.

Прислать комментарий     Решение

Задача 115579

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим углом ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Точка M делит среднюю линию треугольника ABC, параллельную стороне BC, на отрезки, один из которых в три раза длиннее другого. Точка N делит сторону BC на отрезки, один из которых в три раза длиннее другого. В каком отношении прямая MN делит площадь треугольника ABC?

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .