ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Последовательность a1,a2,.. такова, что a1(1,2) и ak+1=ak+ при любом натуральном  k . Докажите, что в ней не может существовать более одной пары членов с целой суммой.

   Решение

Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 414]      



Задача 64362

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
[ Индукция (прочее) ]
[ Кооперативные алгоритмы ]
[ Оценка + пример ]
Сложность: 5
Классы: 10,11

На каждой из 2013 карточек написано по числу, все эти 2013 чисел различны. Карточки перевёрнуты числами вниз. За один ход разрешается указать на десять карточек, и в ответ сообщат одно из чисел, написанных на них (неизвестно, какое).
Для какого наибольшего t гарантированно удастся найти t карточек, про которые известно, какое число написано на каждой из них?

Прислать комментарий     Решение

Задача 73653

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Обход графов ]
[ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 9,10,11

С четырёх сторон шахматной доски размером n×n построена кайма шириной в два поля. Докажите, что кайму можно обойти шахматным конём, побывав на каждом поле один и только один раз, в тех и только тех случаях, когда  n – 1  кратно 4.

Прислать комментарий     Решение

Задача 79514

Темы:   [ Последовательности (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 8,9,10

Можно ли выбрать некоторые натуральные числа так, чтобы при любом натуральном значении n хотя бы одно из чисел n, n + 50 было выбрано и хотя бы одно из чисел n, n + 1987 не было выбрано?
Прислать комментарий     Решение


Задача 98344

Темы:   [ Взвешивания ]
[ Рекуррентные соотношения (прочее) ]
[ Раскладки и разбиения ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 9,10,11

Имеется набор гирь, веса которых в граммах: 1, 2, 4,... , 512 (последовательные степени двойки) – по одной гире каждого веса. Груз разрешается взвешивать с помощью этого набора, кладя гири на обе чашки весов.
  а) Докажите, что никакой груз нельзя взвесить этими гирями более чем 89 способами.
  б) Приведите пример груза, который можно взвесить ровно 89 способами.

Прислать комментарий     Решение

Задача 115397

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
[ Возрастание и убывание. Исследование функций ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 10,11

Последовательность a1,a2,.. такова, что a1(1,2) и ak+1=ak+ при любом натуральном  k . Докажите, что в ней не может существовать более одной пары членов с целой суммой.
Прислать комментарий     Решение


Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 414]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .