Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 499]
|
|
Сложность: 4+ Классы: 9,10,11
|
Треугольник ABC (AB > BC) вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что AM = CN. Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.
|
|
Сложность: 4+ Классы: 9,10,11
|
Вписанная окружность неравнобедренного треугольника ABC касается сторон AB, BC и ABC в точках C1, A1 и B1 соответственно. Описанная окружность треугольника A1BC1 пересекает прямые B1A1 и B1C1 в точках A0 и C0 соответственно. Докажите, что ортоцентр H треугольника A0BC0, центр I вписанной окружности треугольника ABC и середина M стороны AC лежат на одной прямой.
В треугольнике
ABC проведена биссектриса
BD (точка
D лежит на отрезке
AC ). Прямая
BD пересекает окружность
Ω ,
описанную около треугольника
ABC , в точках
B и
E . Окружность
ω , построенная на отрезке
DE как на диаметре,
пересекает окружность
Ω в точках
E и
F . Докажите, что прямая, симметричная прямой
BF относительно прямой
BD ,
содержит медиану треугольника
ABC .
|
|
Сложность: 4+ Классы: 10,11
|
B выпуклом четырёхугольнике ABCD: AC ⊥ BD, ∠BCA = 10°, ∠BDA = 20°, ∠BAC = 40°. Найдите ∠BDC.
|
|
Сложность: 4+ Классы: 9,10,11
|
На плоскости лежат две одинаковые фигуры, имеющие форму буквы ``Г'' . Концы
коротких палочек у букв ``Г'' обозначим через
A и
A'. Длинные палочки
разделены на
n равных частей точками
a1, ...,
an - 1;
a'1,
...,
a'n - 1 (точки деления нумеруются от концов длинных палочек).
Проводятся прямые
Aa1,
Aa2, ...,
Aan - 1;
A'a1,
A'a'2,
...,
A'a'n - 1. Точку пересечения прямых
Aa1 и
A'a1 обозначим
через
X1, прямых
Aa2 и
A'a2 — через
X2 и т.д. Доказать, что
точки
X1,
X2, ...,
Xn - 1 образуют выпуклый многоугольник.
Примечание Problems.Ru: Предполагается, что данные фигуры совмещаются движением, сохраняющим ориентацию.
Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 499]