Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.

Вниз   Решение


а) Внутри сферы находится некоторая точка A. Через A провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках.
Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.

б) Внутри сферы находится икосаэдр, его центр A не обязательно совпадает с центром сферы. Лучи, выпущенные из A в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.

ВверхВниз   Решение


Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Докажите, что найдётся прямая, пересекающая по крайней мере четыре из этих окружностей.

ВверхВниз   Решение


Назовём рассадку $N$ кузнечиков на прямой в различные её точки $k$-удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в $k$ раз. При каких $N\geqslant2$ существует рассадка, являющаяся $k$-удачной сразу для всех натуральных $k$? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.)

ВверхВниз   Решение


Автор: Пак И.

Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого  i = 1, 2, ..., n  в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем  An+1 = A1).  Докажите, что построенные треугольники покрывают всё основание.

ВверхВниз   Решение


Существует ли треугольник с вершинами в узлах клетчатой бумаги, каждая сторона которого длиннее 100 клеточек, а площадь меньше площади одной клеточки?

ВверхВниз   Решение


Автор: Фольклор

В окружность вписаны две равнобочные трапеции так, что каждая сторона одной трапеции параллельна некоторой стороне другой.
Докажите, что диагонали одной трапеции равны диагоналям другой.

ВверхВниз   Решение


Дан треугольник $ABC$. Пусть $I$ – центр его вписанной окружности, $P$ – такая точка на стороне $AB$, что угол $PIB$ прямой, $Q$ – точка, симметричная точке $I$ относительно вершины $A$. Докажите, что точки $C$, $I$, $P$, $Q$ лежат на одной окружности.

ВверхВниз   Решение


Из 54 одинаковых единичных картонных квадратов сделали незамкнутую цепочку, соединив их шарнирно вершинами. Каждый квадрат (кроме крайних) соединён с соседями двумя противоположными вершинами. Можно ли этой цепочкой квадратов полностью закрыть поверхность куба 3×3×3?

ВверхВниз   Решение


Верно ли, что на графике функции  y = x³  можно отметить такую точку A, а на графике функции  y = x³ + |x| + 1  – такую точку B, что расстояние AB не превысит 1/100?

ВверхВниз   Решение


На плоскости даны прямая l и две точки P и Q, лежащие по одну сторону от неё. Найдите на прямой l такую точку M, для которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.

ВверхВниз   Решение


а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?

ВверхВниз   Решение


Прямые AM и AN симметричны относительно биссектрисы угла A треугольника ABC (точки M и N лежат на прямой BC). Докажите, что  BM . BN/(CM . CN) = c2/b2. В частности, если AS — симедиана, то  BS/CS = c2/b2.

ВверхВниз   Решение


Из квадрата 5×5 вырезали центральную клетку. Разрежьте получившуюся фигуру на две части, в которые можно завернуть куб 2×2×2.

ВверхВниз   Решение


a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны.

б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа?

ВверхВниз   Решение


Автор: Белухов Н.

Найдите наименьшее натуральное $k$ такое, что в любом выпуклом $1001$-угольнике сумма длин любых $k$ диагоналей не меньше суммы длин остальных диагоналей.

ВверхВниз   Решение


Коля и Вася за ноябрь получили по 15 оценок: тройки, четвёрки и пятёрки. При этом Коля получил пятёрок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, а троек столько же, сколько Вася пятёрок. Оказалось, что средний балл за ноябрь у мальчиков одинаковый. Сколько троек получил Коля в ноябре?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 168]      



Задача 88067

Тема:   [ Средние величины ]
Сложность: 2+
Классы: 5,6,7

Профессор Тестер проводит серию тестов, на основании которых он выставляет испытуемому средний балл. Закончив отвечать, Джон понял, что если бы он получил за последний тест 97 очков, то его средний балл составил бы 90; а если бы он получил за последний тест всего 73 очка, то его средний балл составил бы 87. Сколько тестов в серии профессора Тестера?

Прислать комментарий     Решение

Задача 88156

Тема:   [ Средние величины ]
Сложность: 2+
Классы: 6,7,8

Средний возраст одиннадцати игроков футбольной команды – 22 года. Во время матча один из игроков получил травму и ушёл с поля. Средний возраст оставшихся на поле игроков стал равен 21 году. Сколько лет футболисту, получившему травму?

Прислать комментарий     Решение

Задача 115457

Темы:   [ Средние величины ]
[ Текстовые задачи (прочее) ]
[ Системы линейных уравнений ]
Сложность: 2+
Классы: 7,8,9

Коля и Вася за ноябрь получили по 15 оценок: тройки, четвёрки и пятёрки. При этом Коля получил пятёрок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, а троек столько же, сколько Вася пятёрок. Оказалось, что средний балл за ноябрь у мальчиков одинаковый. Сколько троек получил Коля в ноябре?

Прислать комментарий     Решение

Задача 116494

Темы:   [ Средние величины ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 10,11

На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.

Прислать комментарий     Решение

Задача 66287

Тема:   [ Средние величины ]
Сложность: 3-
Классы: 7,8,9

Даны 10 чисел:  а1 < а2 < ... < а10.  Сравните среднее арифметическое этих чисел со средним арифметическим первых шести чисел.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 168]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .