ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Площадь трапеции ABCD равна 90. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции вдвое больше другого. Решение |
Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 460]
Площадь треугольника MNP равна 7. Через точку Q на стороне MN проведена прямая, параллельная стороне MP и пересекающая сторону NP в точке R. На отрезке QR взяты точки A и B. Найдите площадь треугольника NAR, если известно, что QR : MP = QA : QB = 1 : 5 и прямая NB проходит через точку пересечения прямых MR и QP.
Дана трапеция MNPQ с основаниями MQ и NP. Прямая, параллельная основаниям, пересекает боковую сторону MN в точке A, а боковую сторону PQ – в точке B. Отношение площадей трапеций ANPB и MABQ равно 2/7. Найдите AB, если NP = 4, MQ = 6.
В треугольнике ABC AB = 4, BC = 5. Из вершины B проведён отрезок BM (M ∈ AC), причём ∠ABM = 45° и ∠MBC = 30°.
В треугольнике BCD BC = 3, CD = 5. Из вершины C проведён отрезок CM (M ∈ BD), причём ∠BCM = 45° и ∠MCD = 60°.
Площадь трапеции ABCD равна 90. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции вдвое больше другого.
Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 460] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|