ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 460]      



Задача 32091

Темы:   [ Пятиугольники ]
[ Неравенства с площадями ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перенос помогает решить задачу ]
[ Монотонность и ограниченность ]
Сложность: 5
Классы: 9,10,11

Дан выпуклый пятиугольник. Каждая диагональ отсекает от него треугольник. Докажите, что сумма площадей треугольников больше площади пятиугольника.

Прислать комментарий     Решение


Задача 58087

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Площадь трапеции ]
[ Отношения площадей (прочее) ]
Сложность: 5
Классы: 8,9,10

Каждая из девяти прямых разбивает квадрат на два четырехугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
Прислать комментарий     Решение


Задача 73769

Темы:   [ Разные задачи на разрезания ]
[ Перегруппировка площадей ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вычисление площадей ]
[ Предел последовательности, сходимость ]
Сложность: 6-
Классы: 8,9,10

Дан квадрат со стороной 1. От него отсекают четыре уголка — четыре треугольника, у каждого из которых две стороны идут по сторонам квадрата и составляют 1/3 их длины. С полученным 8-угольником делают то же самое: от каждой вершины отрезают треугольник, две стороны которого составляют по 1/3 соответствующих сторон 8-угольника, и так далее. Получается последовательность многоугольников (каждый содержится в предыдущем). Найдите площадь фигуры, являющейся пересечением всех этих многоугольников (то есть образованной точками, принадлежащими всем многоугольникам).
Прислать комментарий     Решение


Задача 111866

Темы:   [ Выпуклые многоугольники ]
[ Теория алгоритмов (прочее) ]
[ Медиана делит площадь пополам ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Неравенства с площадями ]
Сложность: 6
Классы: 9,10,11

Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.
Прислать комментарий     Решение


Задача 87618

Темы:   [ Площадь сечения ]
[ Построение сечений ]
[ Подобие ]
[ Отношение площадей подобных треугольников ]
Сложность: 2
Классы: 10,11

Площадь треугольника ABC равна 2. Найдите площадь сечения пирамиды ABCD плоскостью, проходящей через середины рёбер AD , BD , CD .
Прислать комментарий     Решение


Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .