Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 460]
Площадь треугольника MNP равна 7. Через точку Q на стороне
MN проведена прямая, параллельная стороне MP и пересекающая
сторону NP в точке R. На отрезке QR взяты точки A и B. Найдите площадь треугольника NAR, если известно, что QR : MP = QA : QB = 1 : 5 и прямая NB проходит через точку пересечения прямых MR и QP.
Дана трапеция MNPQ с основаниями MQ и NP. Прямая,
параллельная основаниям, пересекает боковую сторону MN в точке A, а боковую сторону PQ – в точке B. Отношение площадей трапеций
ANPB и MABQ равно 2/7. Найдите AB, если NP = 4, MQ = 6.
В треугольнике ABC AB = 4, BC = 5. Из вершины B проведён отрезок BM (M ∈ AC), причём ∠ABM = 45° и ∠MBC = 30°.
а) В каком отношении точка M делит сторону AC?
б) Вычислите длины отрезков AM и MC.
В треугольнике BCD BC = 3, CD = 5. Из вершины C проведён отрезок CM (M ∈ BD), причём ∠BCM = 45° и ∠MCD = 60°.
а) В каком отношении точка M делит сторону BD?
б) Вычислите длины отрезков BM и MD.
Площадь трапеции ABCD равна 90. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции вдвое больше другого.
Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 460]