ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан выпуклый четырёхугольник, диагонали которого перпендикулярны и равны a и b . Найдите площадь четырёхугольника с вершинами в серединах сторон данного.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 2247]      



Задача 111709

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Биссектрисы двух углов вписанного четырёхугольника параллельны.
Докажите, что сумма квадратов двух сторон четырёхугольника равна сумме квадратов двух других сторон.

Прислать комментарий     Решение

Задача 115278

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Площадь параллелограмма ]
Сложность: 3
Классы: 8,9

Ромб и равнобокая трапеция описаны около одной и той же окружности и имеют одинаковые площади. Найдите их острые углы.
Прислать комментарий     Решение


Задача 115621

Темы:   [ Параллелограмм Вариньона ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

Отрезки, соединяющие середины противоположных сторон выпуклого четырёхугольника, взаимно перпендикулярны и равны 2 и 7. Найдите площадь четырёхугольника.
Прислать комментарий     Решение


Задача 115622

Темы:   [ Параллелограмм Вариньона ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

Дан выпуклый четырёхугольник, диагонали которого перпендикулярны и равны a и b . Найдите площадь четырёхугольника с вершинами в серединах сторон данного.
Прислать комментарий     Решение


Задача 115623

Темы:   [ Параллелограмм Вариньона ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

Боковые стороны трапеции лежат на перпендикулярных прямых. Найдите площадь четырёхугольника с вершинами в серединах диагоналей и в серединах оснований трапеции, если её боковые стороны равны a и b .
Прислать комментарий     Решение


Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .