ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На хорде KL окружности радиуса 7 взята точка M, KM = 5, ML = 6. Найдите максимальное из расстояний от точки M до точек окружности. Даны положительные числа x, y, z. Докажите неравенство Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D,
соответственно пересекаются в точке Q . |
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 207]
Точка O лежит на диагонали KM выпуклого четырёхугольника KLMN. Известно, что OM = ON и что точка O одинаково удалена от прямых NK, KL и LM. Найдите углы четырёхугольника, если ∠LOM = 55° и ∠KON = 90°.
В выпуклом четырёхугольнике ABCD выполняются равенства: ∠B = ∠C и CD = 2AB. На стороне BC выбрана такая точка X, что ∠BAX = ∠CDA.
Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D,
соответственно пересекаются в точке Q .
Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что PA = PD.
Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что IM : AB = IN : CD.
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 207]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке