ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано множество точек O, A1, A2, ..., An на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют такие векторы x и y, что для любой точки Ai выполняется равенство     где k и l – некоторые целые числа.

   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 448]      



Задача 115640

Темы:   [ Теорема косинусов ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

На сторонах BC и AD параллелограмма ABCD построены внешним образом квадраты BCPQ и ADKM . Найдите расстояние между их центрами, если BC = BD = 6 , ABC = 97,5o .
Прислать комментарий     Решение


Задача 115669

Темы:   [ Теорема косинусов ]
[ Геометрические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Длины сторон выпуклого четырёхугольника не больше 7. Докажите, что четыре круга с радиусами 5 и центрами в вершинах четырёхугольника полностью покрывают четырёхугольник.
Прислать комментарий     Решение


Задача 115863

Темы:   [ Теорема косинусов ]
[ Скалярное произведение. Соотношения ]
[ Векторы (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Разрезания на параллелограммы ]
Сложность: 4
Классы: 8,9,10,11

Дано множество точек O, A1, A2, ..., An на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют такие векторы x и y, что для любой точки Ai выполняется равенство     где k и l – некоторые целые числа.

Прислать комментарий     Решение

Задача 53275

Темы:   [ Теорема косинусов ]
[ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

В треугольнике ABC известно, что $ \angle$BAC = $ \alpha$, $ \angle$ABC = $ \beta$, BC = a, AD — высота. На стороне AB взята точка P, причём $ {\frac{AP}{PB}}$ = $ {\frac{1}{2}}$. Через точку P проведена окружность, касающаяся стороны BC в точке D. Найдите радиус этой окружности.

Прислать комментарий     Решение


Задача 53276

Темы:   [ Теорема косинусов ]
[ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

На стороне BC треугольника BCD взята точка A, причём BA = AC, $ \angle$CDB = $ \alpha$, $ \angle$BCD = $ \beta$, BD = b; CE — высота треугольника BCD. Окружность проходит через точку A и касается стороны BD в точке E. Найдите радиус этой окружности.

Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .