Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 181]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Верно ли, что при любом n правильный 2n-угольник является проекцией некоторого многогранника, имеющего не более, чем n + 2 грани?
|
|
Сложность: 4+ Классы: 10,11
|
Вася нарисовал на плоскости несколько окружностей и провёл всевозможные
общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?
|
|
Сложность: 4+ Классы: 10,11
|
На окружности отмечено 2n + 1 точек, делящих её на равные дуги (n ≥ 2). Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?
|
|
Сложность: 5- Классы: 10,11
|
Пирог имеет форму правильного n-угольника, вписанного в окружность радиуса 1. Из середин сторон проведены прямолинейные надрезы длины 1. Доказать, что при этом от пирога будет отрезан какой-нибудь кусок.
Пусть A1A2...An – правильный многоугольник с нечётным числом сторон, M – произвольная точка на дуге A1An окружности, описанной около многоугольника. Докажите, что сумма расстояний от точки M до вершин с нечётными номерами равна сумме расстояний от M до вершин с чётными номерами.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 181]