Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В треугольнике ABC  M – точка пересечения медиан, I – центр вписанной окружности, A1 и B1 – точки касания этой окружности со сторонами BC и AC, G – точка пересечения прямых AA1 и BB1. Докажите, что угол CGI прямой тогда и только тогда, когда   GM || AB.

Вниз   Решение


На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
                                     _
                                   _|_|_
                                 _|_|_|_|_
                               _|_|_|_|_|_|_
                              |_|_|_|_|_|_|_|
                           .....................
                         _ _ _ _           _ _ _ _
                        |_|_|_|_| ....... |_|_|_|_|
Рис. 1

ВверхВниз   Решение


Автор: Фольклор

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

ВверхВниз   Решение


Хождение за золотом - 1

Однажды царь решил вознаградить одного из своих мудрецов за хорошую работу.
Он привел его в прямоугольную комнату размром NxM, в каждой клетке
которой лежало несколько килограммов золота. Царь разрешил мудрецу
сделать обойти несколько клеток (переходя с клетки, где сейчас
находится мудрец, в одну из четырех с ней соседних), и собрать все
золото, которое попадется на его пути.

Вам дан маршрут мудреца. Требуется определить, сколько килограммов золота
он собрал.

Входные данные
Во входном файле записано план комнаты. Сначала записано количество
строк N, затем - количество столбцов M (1<=N<=20,1<=M<=20).
Затем записано N строк по M чисел в каждой - количество килограммов
золота, которое лежит в данной клетке (число от 0 до 50).
Далее записано число X - сколько клеток обошел мудрец. Далее
записаны координаты этих клеток (координаты клетки - это два числа:
первое определяет номер строки, второе - номер столбца, верхняя
левая клетка на плане имеет координаты (1,1), правая нижняя - (N,M)).
Гарантируется, что мудрец не проходил по одной и той же клетке дважды.

Выходные данные
В выходной файл выведите количество килограммов золота, которое собрал мудрец.

Пример входного файла
3 4
1 2 3 4
5 6 7 8
9 10 11 12
5
1 1
2 1
2 2
2 3
1 3

Пример выходного файла
22

ВверхВниз   Решение


Известно, что  tg A + tg B = 2  и  ctg A + ctg B = 3.  Найдите  tg (A + B).

ВверхВниз   Решение


Даны два различных приведённых кубических многочлена F(x) и G(x). Выписали все корни уравнений  F(x) = 0,  G(x) = 0,  F(x) = G(x). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена F(x).

ВверхВниз   Решение


Симметричная матрица

Дана квадратная матрица. Проверить, является ли она симметричной относительно
главной диагонали.

Входные данные. В файле INPUT.TXT записано число n (0<n<=100).
В следующих n строках записано по n целых чисел от -32768 до 32767.

Выходные данные. В файл OUTPUT.TXT вывести YES,
если матрица симметрична относительно главной диагонали, иначе вывести NO.

Пример файла INPUT.TXT
3
1 2 3
2 4 5
3 5 6

Пример файла OUTPUT.TXT
YES

ВверхВниз   Решение


Автор: Фольклор

Найдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 415]      



Задача 61001

 [Формулы сокращенного умножения]
Тема:   [ Разложение на множители ]
Сложность: 2
Классы: 7,8,9

Докажите следующие формулы:

an+1bn+1 = (a – b)(an + an–1b + ... + bn);

a2n+1 + b2n+1 = (a + b)(a2na2n–1b + a2n–2b2 – ... + b2n).

Прислать комментарий     Решение

Задача 61078

 [Тождество Диофанта]
Темы:   [ Тождественные преобразования ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Комплексные числа помогают решить задачу ]
Сложность: 2
Классы: 7,8,9,10,11

Докажите равенство   (a2 + b2)(u2 + v2) = (au + bv)2 + (av – bu)2.

Прислать комментарий     Решение

Задача 105072

Тема:   [ Тождественные преобразования ]
Сложность: 2
Классы: 7,8,9

Два различных числа x и y (не обязательно целых) таковы, что  x² – 2000x = y² – 2000y.  Найдите сумму чисел x и y.

Прислать комментарий     Решение

Задача 115962

Тема:   [ Формулы сокращенного умножения ]
Сложность: 2
Классы: 7,8,9

Автор: Фольклор

Найдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24.
Прислать комментарий     Решение


Задача 116144

Темы:   [ Разложение на множители ]
[ Простые числа и их свойства ]
Сложность: 2
Классы: 7,8,9

Найдите все пары простых чисел, разность квадратов которых является простым числом.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 415]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .