ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите наименьшее натуральное n, при котором число А = n³ + 12n² + 15n + 180 делится на 23. Решение |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 965]
Докажите, что ни при каких натуральных значениях x и y число x8 – x7y + x6y² – ... – xy7 + y8 не является простым.
Найдите наименьшее натуральное n, при котором число А = n³ + 12n² + 15n + 180 делится на 23.
Сравните между собой наименьшие положительные корни многочленов x2011 + 2011x – 1 и x2011 – 2011x + 1.
Приведённый квадратный трёхчлен P(x) таков, что многочлены P(x) и P(P(P(x))) имеют общий корень. Докажите, что P(0)P(1) = 0.
На доске написаны девять приведённых квадратных трёхчленов: x² + a1x + b1, x² + a2x + b2, ..., x² + a9x + b9. Известно, что последовательности a1, a2, ..., a9 и b1, b2, ..., b9 – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 965] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|