Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 1435]
|
|
Сложность: 3 Классы: 8,9,10
|
Существует ли прямоугольный треугольник, в котором две медианы перпендикулярны?
На стороне AB треугольника ABC взята такая точка P, что AP = 2PB, а на стороне AC – ее середина, точка Q. Известно, что CP = 2PQ.
Докажите, что треугольник ABC прямоугольный.
В треугольнике ABC точка M – середина стороны AC,
точка P лежит на стороне BC. Отрезок AP пересекает BM в точке O. Оказалось, что BO = BP.
Найдите отношение OM : PC.
|
|
Сложность: 3 Классы: 9,10,11
|
На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что ВС1 = С1А1 = А1В1 = В1С.
Докажите, что точка пересечения высот треугольника С1А1В1 лежит на биссектрисе угла А.
В трапеции ABCD основание BC в два раза меньше основания AD. Из вершины D опущен перпендикуляр DE на сторону AB. Докажите, что СЕ = CD.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 1435]