ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали выпуклого четырёхугольника ABCD перпендикулярны и пересекаются в точке O. Известно, что сумма радиусов окружностей, вписанных в треугольники AOB и COD, равна сумме радиусов окружностей, вписанных в треугольники BOC и DOA. Докажите, что
  а) четырёхугольник ABCD – описанный;
  б) четырёхугольник ABCD симметричен относительно одной из своих диагоналей.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]      



Задача 52859

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
[ Четыре точки, лежащие на одной окружности ]
[ Три точки, лежащие на одной прямой ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

Точки K и P симметричны основанию H высоты BH треугольника ABC относительно его сторон AB и BC.
Докажите, что точки пересечения отрезка KP со сторонами AB и BC (или их продолжениями) – основания высот треугольника ABC.

Прислать комментарий     Решение

Задача 115884

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Углы между биссектрисами ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Дан треугольник ABC и построена вневписанная окружность с центром O, касающаяся стороны BC и продолжений сторон AB и AC. Точка O1 симметрична точке O относительно прямой BC. Найдите величину угла A, если известно, что точка O1 лежит на описанной около треугольника ABC окружности.

Прислать комментарий     Решение

Задача 116034

Темы:   [ Описанные четырехугольники ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенство треугольника (прочее) ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 9,10,11

Диагонали выпуклого четырёхугольника ABCD перпендикулярны и пересекаются в точке O. Известно, что сумма радиусов окружностей, вписанных в треугольники AOB и COD, равна сумме радиусов окружностей, вписанных в треугольники BOC и DOA. Докажите, что
  а) четырёхугольник ABCD – описанный;
  б) четырёхугольник ABCD симметричен относительно одной из своих диагоналей.

Прислать комментарий     Решение

Задача 109850

Темы:   [ Шахматная раскраска ]
[ Ломаные ]
[ Ломаные внутри квадрата ]
[ Четность и нечетность ]
[ Свойства симметрий и осей симметрии ]
[ Таблицы и турниры (прочее) ]
Сложность: 4-
Классы: 7,8,9,10

Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.

Прислать комментарий     Решение

Задача 115292

Темы:   [ Три точки, лежащие на одной прямой ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Диаметр, основные свойства ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4-
Классы: 8,9

Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .