Страница:
<< 16 17 18 19 20 21
22 >> [Всего задач: 107]
Точки K и P симметричны основанию H высоты BH треугольника ABC относительно его сторон AB и BC.
Докажите, что точки пересечения отрезка KP со сторонами AB и BC (или их продолжениями) – основания высот треугольника ABC.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан треугольник ABC и построена вневписанная окружность с центром O, касающаяся стороны BC и продолжений сторон AB и AC. Точка O1 симметрична точке O относительно прямой BC. Найдите величину угла A, если известно, что точка O1 лежит на описанной около треугольника ABC окружности.
|
|
Сложность: 3+ Классы: 9,10,11
|
Диагонали выпуклого четырёхугольника ABCD перпендикулярны и
пересекаются в точке O. Известно, что сумма радиусов окружностей, вписанных в треугольники AOB и COD, равна сумме радиусов окружностей, вписанных в треугольники BOC и DOA. Докажите, что
а) четырёхугольник ABCD – описанный;
б) четырёхугольник ABCD симметричен относительно одной из своих диагоналей.
|
|
Сложность: 4- Классы: 7,8,9,10
|
Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.
Дан остроугольный треугольник ABC. Точки B' и C'
симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.
Страница:
<< 16 17 18 19 20 21
22 >> [Всего задач: 107]