ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В этой задаче вы должны построить предложение русского языка, которое говорит о себе правду, только правду, и ничего кроме правды. Это предложение должно содержать в себе информацию о количестве букв, слов, пробелов, запятых, точек, кавычек в предложении и о количестве вхождений в предложение всех его слов. Оно должно быть орфографически и пунктуационно правильным, а также корректным с точки зрения русского языка. Все числительные должны быть записаны словами. Моделью такого предложения (не удовлетворяющей лишь свойству
правдивости) может служить такой текст:
Когда Кай справился с этим заданием, Королева дала ему другую ледяную пластинку (см. рисунок). Как разрезать ее на две равные части?
Треугольник BHC, где H – ортоцентр треугольника ABC, достроен до параллелограмма BHCD. Докажите, что ∠BAD = ∠CAH. На плоскости дан квадрат и точка Р. Могут ли расстояния от точки Р до вершин квадрата оказаться равными 1, 1, 2 и 3? Из двух квадратов один. Имеются два квадрата 3×3 и 1×1. Разрезать эти квадраты прямыми на части (не более трех), из которых можно было бы сложить один квадрат. Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости. Две равные окружности пересекаются в точках A и B . P – отличная от A и B точка одной из окружностей, X , Y – вторые точки пересечения прямых PA , PB с другой окружностью. Докажите, что прямая, проходящая через P и перпендикулярная AB , делит одну из дуг XY пополам. На дуге AC описанной окружности правильного треугольника ABC взята точка M, отличная от C, P – середина этой дуги. Пусть N – середина хорды BM, K – основание перпендикуляра, опущенного из точки P на MC. Докажите, что треугольник ANK правильный. Разрежьте фигуру (см. рисунок) по линиям сетки на четыре равные фигуры. Докажите иррациональность следующих чисел: а) б) в) г) д) cos 10° ; е) tg 10° ; ж) sin 1° ; з) log23 . Доказать, что если несократимая рациональная дробь p/q является корнем многочлена P(x) с целыми коэффициентами, то P(x) = (qx – p)Q(x), где многочлен Q(x) также имеет целые коэффициенты. По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно. Разрежьте квадрат 4×4 по линиям сетки на 9 прямоугольников так, чтобы равные прямоугольники не соприкасались ни сторонами, ни вершинами. Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций f1(x), f2(x), ..., fN(x), композициями которых можно записать любой из них (например, P1(x) = f2(f1(f2(x))))? Две окружности пересекаются в точках A и B. К ним проведена общая касательная, которая касается первой окружности в точке C, а второй – в точке D. Пусть B – ближайшая к прямой CD точка пересечения окружностей. Прямая CB второй раз пересекает вторую окружность в точке E. Докажите, что AD – биссектриса угла CAE.
Докажите, что
cos 20o — число
иррациональное.
Перед футбольным матчем команд "Север" и "Юг" было дано пять прогнозов: |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]
Сборная России по футболу выиграла у сборной Туниса со счетом 9 : 5. Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса.
Матч Бавария – Спартак окончился со счетом 5 : 8. Докажите, что в матче был такой момент, когда Спартаку оставалось забить столько мячей, сколько Бавария уже забила к этому времени.
Школьный чемпионат по настольному теннису проводили по олимпийской системе. Победитель выиграл шесть партий. Сколько участников турнира выиграло игр больше, чем проиграло? (На турнире по олимпийской системе участников разбивают на пары. Те, кто проиграл игру в первом туре, выбывают. Тех, кто выиграл в первом туре, снова разбивают на пары. Те, кто проиграл во втором туре, выбывают и т. д. В каждом туре для каждого участника нашлась пара.)
Перед футбольным матчем команд "Север" и "Юг" было дано пять прогнозов:
В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так, что каждая команда первой группы одержала ровно n побед, а каждая команда второй группы – ровно m побед. Могло ли оказаться, что m ≠ n?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке