ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 829]      



Задача 111468

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

В треугольнике ABC биссектриса AD делит сторону BC в отношении  BD : DC = 2 : 1.  В каком отношении медиана CE делит эту биссектрису?

Прислать комментарий     Решение

Задача 115574

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

На катетах прямоугольного треугольника как на диаметрах построены окружности. Найдите их общую хорду, если катеты равны 3 и 4.

Прислать комментарий     Решение

Задача 116043

Темы:   [ Индукция (прочее) ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3
Классы: 8

Петя умеет на любом отрезке отмечать точки, которые делят этот отрезок пополам или в отношении  n : (n + 1),  где n – любое натуральное число. Петя утверждает, что этого достаточно, чтобы на любом отрезке отметить точку, которая делит его в любом заданном рациональном отношении. Прав ли он?

Прислать комментарий     Решение

Задача 116067

Темы:   [ Необычные построения (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема Пифагора (прямая и обратная) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).

Прислать комментарий     Решение

Задача 116095

Темы:   [ Радикальная ось ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9

Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .