ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите следующие свойства подходящих дробей: Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный. Для натуральных чисел a > b > 1 определим последовательность x1, x2, ... формулой
Из точки M на плоскость α опущен перпендикуляр
MH длины 3 и проведены две наклонные, составляющие
с перпендикуляром углы по 30o . Угол между наклонными
равен 60o .
а) Найдите расстояние между основаниями A и B наклонных.
б) На отрезке AB как на катете в плоскости α построен
прямоугольный треугольник ABC (угол A – прямой). Найдите
объём пирамиды MABC , зная, что cos В треугольнике даны два угла α и β и радиус R описанной окружности. Найдите высоту, опущенную из вершины третьего угла треугольника. Вневписанные окружности касаются сторон AB и AC треугольника ABC в точках P и Q соответственно. Точка L – середина PQ, точка M – середина BC. Точки L1 и L2 симметричны точке L относительно середин отрезков BM и CM соответственно. Докажите, что L1P = L2Q. Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что PA = PD. |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 330]
На стороне AC треугольника ABC отмечены точки D и E, а на отрезке BE – точка F. Оказалось, что
AC = BD, 2∠ACF = ∠ADB, 2∠CAF = ∠CDB.
Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что PA = PD.
Из одной точки окружности проведены две хорды, равные 9 и 17. Найдите радиус окружности, если расстояние между серединами данных хорд равно 5.
Из одной точки окружности проведены две хорды, равные 10 и 12. Найдите радиус окружности, если расстояние от середины меньшей хорды до большей равно 4.
Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите сумму отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по разные стороны от общей хорды AB.
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке