Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Треугольник T содержится внутри выпуклого центрально-симметричного многоугольника M . Треугольник T' получается из треугольника T центральной симметрией относительно некоторой точки P , лежащей внутри треугольника T . Докажите, что хотя бы одна из вершин треугольника T' лежит внутри или на границе многоугольника M .

Вниз   Решение


Окружность, построенная на большей боковой стороне AB прямоугольной трапеции ABCD как на диаметре, пересекает основание AD в его середине. Известно, что AB=10 , CD=6 . Найдите среднюю линию трапеции.

ВверхВниз   Решение


За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.

ВверхВниз   Решение


Дан равнобедренный треугольник ABC  (AB = AC).  На продолжении стороны AC за точку C отложен отрезок CD, равный BC. Оказалось, что  BD = AB.
Найдите углы треугольника ABC.

ВверхВниз   Решение


Окружность с центром на стороне AC равнобедренного треугольника ABC  (AB = BC)  касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно  3 : 8.

ВверхВниз   Решение


В равнобочной трапеции ABCD угол при основании AD равен α , боковая сторона AB равна b . Окружность, касающаяся сторон AB и AD и проходящая через вершину C , пересекает стороны BC и CD в точках M и N соответственно. Найдите BM , если = 3 .

ВверхВниз   Решение


Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.

ВверхВниз   Решение


Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел  a1, a2, ...,  такая, что  P(a1) = 0,  P(a2) = a1P(a3) = a2  и т. д. Докажите, что не все числа в последовательности  a1, a2, ...  различны.

ВверхВниз   Решение


Имеется треугольник ABC. На луче BA отложим точку A1, так что отрезок BA1 равен BC. На луче CA отложим точку A2, так что отрезок C2 равен BC. Аналогично построим точки B1, B2 и C1, C2. Докажите, что прямые A1A2, B1B 2, C1C2 параллельны.

ВверхВниз   Решение


В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.

ВверхВниз   Решение


Автор: Джукич Д.

Найдите все такие натуральные числа n, что для любых двух его взаимно простых делителей a и b число  a + b – 1  также является делителем n.

ВверхВниз   Решение


На столе лежит картонный круг радиуса 5 см. Петя, пока возможно, прикладывает к кругу снаружи картонные квадраты со стороной 5 см так, чтобы выполнялись условия:
  1) у каждого квадрата одна вершина лежит на границе круга;
  2) квадраты не пересекаются;
  3) каждый следующий квадрат касается предыдущего вершиной к вершине.
Определите, сколько квадратов может выложить Петя, и докажите, что последний и первый квадрат тоже коснутся вершинами.

Вверх   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 1283]      



Задача 116068

Тема:   [ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Две окружности w1 и w2 пересекаются в точках A и B. К ним через точку A проводятся касательные l1 и l2 (соответственно). Перпендикуляры, опущенные из точки B на l2 и l1, вторично пересекают окружности w1 и w2 соответственно в точках K и N. Докажите, что точки K, A и N лежат на одной прямой.

Прислать комментарий     Решение

Задача 116240

Темы:   [ Вписанный угол равен половине центрального ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9

На столе лежит картонный круг радиуса 5 см. Петя, пока возможно, прикладывает к кругу снаружи картонные квадраты со стороной 5 см так, чтобы выполнялись условия:
  1) у каждого квадрата одна вершина лежит на границе круга;
  2) квадраты не пересекаются;
  3) каждый следующий квадрат касается предыдущего вершиной к вершине.
Определите, сколько квадратов может выложить Петя, и докажите, что последний и первый квадрат тоже коснутся вершинами.

Прислать комментарий     Решение

Задача 116877

Темы:   [ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Точка Х расположена на диаметре АВ окружности радиуса R. Точки K и N лежат на окружности в одной полуплоскости относительно АВ,
а  ∠KXA = ∠NXB = 60°.  Найдите длину отрезка KN.

Прислать комментарий     Решение

Задача 52970

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Диагональ BD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Найдите диагональ AC, если BD = 2, AB = 1, $ \angle$ABD : $ \angle$DBC = 4 : 3.

Прислать комментарий     Решение


Задача 52971

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Сторона AD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Найдите сторону BC, если AD = 6, BD = 3$ \sqrt{3}$, $ \angle$BAC : $ \angle$CAD = 1 : 3.

Прислать комментарий     Решение


Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 1283]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .