ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана четырёхугольная пирамида, в которую можно вписать сферу, причём центр этой сферы лежит на высоте пирамиды. Докажите, что в основания пирамиды можно вписать окружность.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



Задача 111282

Темы:   [ Сфера, вписанная в пирамиду ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

Сфера вписана в четырёхугольную пирамиду SABCD , основанием которой является трапеция ABCD , а также вписана в правильный тетраэдр, одна из граней которого совпадает с боковой гранью пирамиды SABCD . Найдите радиус сферы, если объём пирамиды SABCD равен 64.
Прислать комментарий     Решение


Задача 111283

Темы:   [ Сфера, вписанная в пирамиду ]
[ Прямая призма ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

Сфера вписана в правильную треугольную пирамиду SABC ( S – вершина), а также вписана в прямую треугольную призму KLMK1L1M1 , у которой KL=KM= , а боковое ребро KK1 лежит на прямой AB . Найдите радиус сферы, если известно, что прямая SC параллельна плоскости LL1M1M .
Прислать комментарий     Решение


Задача 111284

Темы:   [ Сфера, вписанная в пирамиду ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

Сфера вписана в четырёхугольную пирамиду SKLMN , основанием которой является трапеция KLMN , а также вписана в правильный тетраэдр, одна из граней которого совпадает с боковой гранью пирамиды SKLMN . Найдите радиус сферы, если площадь трапеции KLMN равен 3 .
Прислать комментарий     Решение


Задача 111285

Темы:   [ Сфера, вписанная в пирамиду ]
[ Прямая призма ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

Сфера вписана в правильную треугольную пирамиду SKLM ( S – вершина), а также вписана в прямую треугольную призму ABCA1B1C1 , у которой AB=AC , BC=4 , боковое ребро AA1 лежит на прямой KL . Найдите радиус сферы, если известно, что прямая SM параллельна плоскости BB1C1C .
Прислать комментарий     Решение


Задача 116325

Темы:   [ Сфера, вписанная в пирамиду ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 10,11

Дана четырёхугольная пирамида, в которую можно вписать сферу, причём центр этой сферы лежит на высоте пирамиды. Докажите, что в основания пирамиды можно вписать окружность.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .