ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC угол B равен 60o , а высоты CE и AD пересекаются в точке O . Докажите, что центр описанной окружности треугольника ABC лежит на общей биссектрисе углов AOE и COD . Найти множество точек. Даны две точки А и В. Найти множество точек, каждая из которых является симметричным образом точки А относительно некоторой прямой, проходящей через точку В. В остроугольном треугольнике проведены высоты AA1 и BB1. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной BC на прямую AC, проходит через центр вписанной окружности треугольника A1CB1.
В треугольнике ABC сторона AC равна 4, а сторона BC равна
Сфера вписана в правильную треугольную пирамиду SABC ( S –
вершина), а также вписана в прямую треугольную призму KLMK1L1M1 ,
у которой KL=KM=
В треугольнике DEF угол DEF равен
60o. Найдите площадь треугольника DEF,
если известно, что DF = 3,
EF =
Тупой угол со сторонами, длины которых равны 3 и 6, вписан в окружность
радиуса Oснованием пирамиды служит выпуклый четырехугольник. Oбязательно ли существует сечение этой пирамиды, не пересекающее основание и являющееся вписанным четырехугольником? Из точки D окружности S опущен перпендикуляр DC на диаметр AB . Окружность S1 касается отрезка CA в точке E , а также отрезка CD и окружности S . Докажите, что DE — биссектриса треугольника ADC . Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°. Расстояния до вершин квадрата. Могут ли расстояния от некоторой точки на плоскости до вершин некоторого квадрата быть равными 1, 4, 7 и 8? Дан остроугольный треугольник ABC. Для произвольной прямой l обозначим через la, lb, lc прямые, симметричные l относительно сторон треугольника, а через Il – центр вписанной окружности треугольника, образованного этими прямыми. Найдите геометрическое место точек Il. Дана четырёхугольная пирамида, в которую можно вписать сферу, причём центр этой сферы лежит на высоте пирамиды. Докажите, что в основания пирамиды можно вписать окружность. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]
Сфера вписана в четырёхугольную пирамиду SABCD , основанием которой является трапеция ABCD , а также вписана в правильный тетраэдр, одна из граней которого совпадает с боковой гранью пирамиды SABCD . Найдите радиус сферы, если объём пирамиды SABCD равен 64.
Сфера вписана в правильную треугольную пирамиду SABC ( S –
вершина), а также вписана в прямую треугольную призму KLMK1L1M1 ,
у которой KL=KM=
Сфера вписана в четырёхугольную пирамиду SKLMN , основанием которой
является трапеция KLMN , а также вписана в правильный тетраэдр, одна
из граней которого совпадает с боковой гранью пирамиды SKLMN .
Найдите радиус сферы, если площадь трапеции KLMN равен 3
Сфера вписана в правильную треугольную пирамиду SKLM ( S –
вершина), а также вписана в
прямую треугольную призму ABCA1B1C1 , у которой AB=AC , BC=4
Дана четырёхугольная пирамида, в которую можно вписать сферу, причём центр этой сферы лежит на высоте пирамиды. Докажите, что в основания пирамиды можно вписать окружность.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке