ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что .

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1659]      



Задача 116346

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Общая касательная к двум окружностям ]
[ Касающиеся окружности ]
Сложность: 3
Классы: 8,9,10

Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что .

Прислать комментарий     Решение

Задача 116372

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Площадь (прочее) ]
[ Подобные треугольники (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 9,10,11

Прямоугольник площади 14 делит сторону квадрата в отношении 1 к 3 (см. рис). Найдите площадь квадрата.

Прислать комментарий     Решение

Задача 116499

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 7,8,9

В остроугольном треугольнике ABC на сторонах AC и AB отметили точки K и L соответственно, причём прямая KL параллельна BC и  KL = KC.  На стороне BC выбрана точка M так, что  ∠KMB = ∠BAC.  Докажите, что  KM = AL.

Прислать комментарий     Решение

Задача 116535

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В прямоугольном треугольнике АВС угол А равен 60°, М – середина гипотенузы АВ.
Найдите угол IMA, где I – центр окружности, вписанной в данный треугольник.

Прислать комментарий     Решение

Задача 116870

Темы:   [ Правильный (равносторонний) треугольник ]
[ Перегруппировка площадей ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 9,10

На сторонах AB и BC равностороннего треугольника ABC отмечены точки L и K соответственно, M – точка пересечения отрезков AK и CL. Известно, что площадь треугольника AMC равна площади четырёхугольника LBKM. Найдите угол AMC.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1659]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .