|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Целые числа m и n таковы, что сумма |
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 420]
Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)
Целые ненулевые числа a1, a2, ..., an таковы, что равенство a) Докажите, что число n чётно. б) При каком наименьшем n такие числа существуют?
Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0, P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все числа в последовательности a1, a2, ... различны.
Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.
Существуют ли такие попарно различные натуральные числа m, n, p, q, что m + n = p + q и
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 420] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|