ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)
В треугольнике ABC точка M – середина стороны BC, AA1, BB1 и CC1 – высоты. Прямые AB и A1B1 пересекаются в точке X, а прямые MC1 и AC – в точке Y. Докажите, что XY || BC . На стороне AC треугольника ABC выбрана точка X . Докажите, что если вписанные окружности треугольников ABX и BCX касаются друг друга, то точка X лежит на окружности, вписанной в треугольник ABC . Назовём натуральное семизначное число удачным, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?
В прямоугольном треугольнике ABC гипотенуза AB=c ,
109 яблок разложены по пакетам. В некоторых пакетах лежит по x яблок, в других – по три яблока. Сумасшедший кассир меняет любые две монеты на любые три по вашему выбору, а любые три – на любые две. Сможет ли Петя обменять у него 100 монет достоинством 1 рубль на 100 монет достоинством 1 форинт, отдав ему при обмене ровно 2001 монету? Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.
Сторона основания ABC пирамиды TABC равна 4, боковое
ребро TA перпендикулярно плоскости основания. Найдите
площадь сечения пирамиды плоскостью, проходящей через
середины рёбер AC и BT параллельно медиане BD
грани BCT , если известно, что расстояние от вершины
T до этой плоскости равно Один треугольник лежит внутри другого. Найдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24. Саша пишет на доске последовательность натуральных чисел. Первое число N > 1 написано заранее. Новые натуральные числа он получает так: вычитает из последнего записанного числа или прибавляет к нему любой его делитель, больший 1. При любом ли натуральном N > 1 Саша сможет написать на доске в какой-то момент число 2011? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 420]
Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A?
Ваня расставил в кружках различные цифры, а внутри каждого треугольника записал либо сумму, либо произведение цифр в его вершинах. Потом он стёр цифры в кружочках. Впишите в кружочки различные цифры так, чтобы условие выполнялось.
Сумасшедший кассир меняет любые две монеты на любые три по вашему выбору, а любые три – на любые две. Сможет ли Петя обменять у него 100 монет достоинством 1 рубль на 100 монет достоинством 1 форинт, отдав ему при обмене ровно 2001 монету?
Саша пишет на доске последовательность натуральных чисел. Первое число N > 1 написано заранее. Новые натуральные числа он получает так: вычитает из последнего записанного числа или прибавляет к нему любой его делитель, больший 1. При любом ли натуральном N > 1 Саша сможет написать на доске в какой-то момент число 2011?
Докажите, что число, имеющее нечётное число делителей, является точным квадратом.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 420]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке