ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров. Через центр квадрата проведены две перпендикулярные
прямые. Докажите, что их точки пересечения со сторонами
квадрата образуют квадрат.
В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности: Последовательность чисел x0, x1, x2,...задается условиями
x0 = 1, xn + 1 = axn (n Найдите наибольшее число a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого a?
На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
В выпуклом пятиугольнике ABCDE Сколько осей симметрии может быть у треугольника? Вписанная окружность прямоугольного треугольника ABC касается гипотенузы AB в точке P, CH – высота треугольника ABC. В доску вбито 20 гвоздиков (см. рисунок). Расстояние между любыми соседними равно 1 дюйму. Натяните нитку длиной 19 дюймов от первого гвоздика до второго так, чтобы она прошла через все гвоздики.
Точки A' , B' и C' "– середины сторон BC ,
CA и AB треугольника ABC соответственно, а BH "– его
высота. Докажите, что если описанные около треугольников AHC' и
CHA' окружности проходят через точку M , отличную от H , то
У Юры есть калькулятор, который позволяет умножать число на 3, прибавлять к числу 3 или (если число делится на 3 нацело) делить на 3. Как на этом калькуляторе получить из числа 1 число 11? Квадрат вписан в равнобедренный прямоугольный треугольник, причём одна вершина квадрата расположена на гипотенузе, противоположная ей вершина совпадает с вершиной прямого угла треугольника, а остальные лежат на катетах. Найдите сторону квадрата, если катет треугольника равен a. На стороне AB треугольника ABC отмечена точка K. Отрезок CK пересекает медиану AM треугольника в точке P. Оказалось, что AK = AP. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 200]
На стороне AB треугольника ABC отмечена точка K. Отрезок CK пересекает медиану AM треугольника в точке P. Оказалось, что AK = AP.
С помощью циркуля и линейки разделите данный отрезок на n равных частей.
В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и угол DEF – прямой.
Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.
На сторонах AB и BC треугольника ABC взяты точки D
и E соответственно, причём AD/DB = BE/EC = 2 и ∠C = 2∠DEB.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 200]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке