ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов. По данному натуральному числу a0 строится последовательность {an} следующим образом Квадрат ABCD со стороной 2 и квадрат DEFK со стороной 1 стоят рядом на верхней стороне AK квадрата AKLM со стороной 3. Между парами точек A и E, B и F, C и K, D и L натянуты паутинки. Паук поднимается снизу вверх по маршруту AEFB и спускается по маршруту CKDL. Какой маршрут короче?
Дана последовательность неотрицательных чисел a1 , a2 ,
an . Для любого k от 1 до n обозначим через mk величину
Докажите, что при любом α>0 число тех k , для которых mk>α , меньше, чем a1+a2+...+an α.
Про углы треугольника ABC известно, что
|
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 5292]
Площадь трапеции ABCD равна 405. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции вдвое больше другого.
В окружности провели диаметр AB и параллельную ему хорду CD, так, что расстояние между ними равно половине радиуса этой окружности (см. рис.). Найдите угол CAB.
Про углы треугольника ABC известно, что
Укажите неравносторонний треугольник, который можно разделить на три равных треугольника.
Дан треугольник со сторонами 2, 3, 4. Найдите радиус наименьшего круга, из которого можно вырезать этот треугольник.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 5292]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке