ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах AB, BC и CA треугольника ABC (или
на их продолжениях) взяты точки C1, A1 и B1 так, что ∠(CC1, AB) = ∠(AA1, BC) = ∠(BB1, CA) = α. Прямые AA1 и BB1, BB1 и CC1, CC1 и AA1 пересекаются в точках C', A', B' соответственно. Докажите, что: В треугольнике $ABC$ ($a>b>c$) указаны инцентр $I$, а также точки $K$ и $N$ касания вписанной окружности со сторонами $BC$ и $AC$ соответственно. Проведя не более трёх линий одной линейкой, постройте отрезок длины $a-c$. Окружность S касается окружностей S1 и S2 в
точках A1 и A2; B — точка окружности S, а K1
и K2 — вторые точки пересечения прямых A1B и A2B с
окружностями S1 и S2. Докажите, что если прямая K1K2
касается окружности S1, то она касается и окружности S2.
На плоскости даны точки A(1;2) , B(2;1) , C(3;-3) , D(0;0) . Они являются вершинами выпуклого четырёхугольника ABCD . В каком отношении точка пересечения его диагоналей делит диагональ AC ? Окружности радиусов ta, tb, tc касаются внутренним образом описанной окружности треугольника ABC в его вершинах A, B, C и касаются друг друга внешним образом. Докажите, что
ta =
Пусть O — центр описанной окружности
(неправильного) треугольника ABC, M — точка пересечения медиан.
Докажите, что прямая OM перпендикулярна медиане CC1 тогда и только
тогда, когда
a2 + b2 = 2c2.
Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер. |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 5294]
Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер.
Стороны синего и зеленого правильных треугольников соответственно параллельны. Периметр синего треугольника равен 4, а периметр зеленого треугольника равен 5. Найдите периметр шестиугольника, полученного в пересечении этих треугольников.
Хорда пересекает диаметр под углом в 30o и делит его на два отрезка, равные 2 и 6. Найдите расстояние от центра окружности до этой хорды.
Пусть O - центр круга, описанного около треугольника ABC.
Найдите угол OAC, если: а)
Сторона ромба равна 8 см, острый угол равен 30o. Найдите радиус вписанного круга.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 5294]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке