Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?

Вниз   Решение


Автор: Ботин Д.А.

Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните.

ВверхВниз   Решение


Докажите, что sin< при 0<x< .

ВверхВниз   Решение


Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Вверх   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 210]      



Задача 61249

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 5+
Классы: 10,11

Формулы Рамануджана. Докажите следующие тождества:
а) $ \sqrt[3]{\cos\dfrac{2\pi}{7}}$ + $ \sqrt[3]{\cos\dfrac{4\pi}{7}}$ + $ \sqrt[3]{\cos\dfrac{8\pi}{7}}$ = $ \sqrt[3]{\dfrac{5-3\sqrt[3]7}{2}}$;
б) $ \sqrt[3]{\cos\dfrac{2\pi}{9}}$ + $ \sqrt[3]{\cos\dfrac{4\pi}{9}}$ + $ \sqrt[3]{\cos\dfrac{8\pi}{9}}$ = $ \sqrt[3]{\dfrac{3\sqrt[3]9-6}{2}}$.

Прислать комментарий     Решение

Задача 86112

Темы:   [ Общие четырехугольники ]
[ Тригонометрия (прочее) ]
Сложность: 2
Классы: 9,10

Существует ли плоский четырехугольник, у которого тангенсы всех внутренних углов равны?
Прислать комментарий     Решение


Задача 65983

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Тригонометрический круг ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 2+
Классы: 9,10,11

В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m?

Прислать комментарий     Решение

Задача 116493

Темы:   [ Синусы и косинусы углов треугольника ]
[ Системы тригонометрических уравнений и неравенств ]
Сложность: 2+
Классы: 10,11

Про углы треугольника ABC известно, что      и    .   Найдите величину угла C.

Прислать комментарий     Решение

Задача 116563

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 10,11

Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .