Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n  у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
  а) Какие коробки следует купить при  n = 10  и  k = 3 ?
  б) Тот же вопрос для произвольных натуральных  n ≥ k.

Вниз   Решение


Теорема косинусов для тетраэдра.}Квадрат площади каждой грани тетраэдра равен сумме квадратов площадей трёх остальных граней без удвоенных попарных произведений площадей этих граней на косинусы двугранных углов между ними, т.е.

S20 = S21+S22+S23- 2S1S2 cos α12- 2S1S3 cos α13- 2S2S3 cos α23.

ВверхВниз   Решение


Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

ВверхВниз   Решение


Год проведения нынешнего математического праздника делится на его номер:  2006 : 17 = 118.
  а) Назовите первый номер матпраздника, для которого это тоже было выполнено.
  б) Назовите последний номер матпраздника, для которого это тоже будет выполнено.

ВверхВниз   Решение


Что больше:  20112011 + 20092009  или  20112009 + 20092011?

ВверхВниз   Решение


Натуральные числа d и  d' > d  – делители натурального числа n. Докажите, что  d' > d + d²/n.

ВверхВниз   Решение


На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 100]      



Задача 77920

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 8,9

Что больше     или ?

Прислать комментарий     Решение

Задача 88321

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Произведения и факториалы ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Докажите, что  .

Прислать комментарий     Решение

Задача 98085

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Автор: Фомин Д.

Докажите, что произведение 99 дробей     где  k = 2, 3, ..., 100,  больше ⅔.

Прислать комментарий     Решение

Задача 116214

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 8,9,10

Что больше:  20112011 + 20092009  или  20112009 + 20092011?

Прислать комментарий     Решение

Задача 116579

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .