ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны n + 1 попарно различных натуральных чисел, меньших 2n (n > 1). |
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 488]
На плоскости отметили n (n > 2) прямых, проходящих через одну точку O таким образом, что для каждых двух из них найдётся такая отмеченная прямая, которая делит пополам одну из пар вертикальных углов, образованных этими прямыми. Докажите, что проведённые прямые делят полный угол на равные части.
На кольцевом треке 2n велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее n² встреч.
Даны n + 1 попарно различных натуральных чисел, меньших 2n (n > 1).
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 488] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|