ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.

Вниз   Решение


Автор: Ботин Д.А.

Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?

ВверхВниз   Решение


ABC – равнобедренный треугольник с основанием AC, CD – биссектриса угла C,  ∠ADC = 150°.  Найдите ∠B.

ВверхВниз   Решение


В окружности радиуса R = 4 проведены хорда AB и диаметр AK, образующий с хордой угол $ {\frac{\pi}{8}}$. В точке B проведена касательная к окружности, пересекающая продолжение диаметра AK в точке C. Найдите медиану AM треугольника ABC.

ВверхВниз   Решение


Периметр выпуклого четырёхугольника равен 4. Докажите, что его площадь не превосходит 1.

ВверхВниз   Решение


Между девятью планетами Солнечной системы введено космическое сообщение. Ракеты летают по следующим маршрутам: Земля – Меркурий, Плутон – Венера, Земля – Плутон, Плутон – Меркурий, Меркурий – Венера, Уран – Нептун, Нептун – Сатурн, Сатурн – Юпитер, Юпитер – Марс и Марс – Уран. Можно ли добраться с Земли до Марса?

ВверхВниз   Решение


Решите уравнение:

ВверхВниз   Решение


Автор: Фольклор

В треугольнике ABC медиана, проведённая из вершины A к стороне BC, в четыре раза меньше стороны AB и образует с ней угол 60°. Найдите угол А.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 60]      



Задача 110965

Темы:   [ Удвоение медианы ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Медиана AM и высота CH равнобедренного треугольника ABC  (AB = BC)  пересекаются в точке K.
Найдите площадь треугольника ABC, если  CK = 5,  KH = 1.

Прислать комментарий     Решение

Задача 110966

Темы:   [ Удвоение медианы ]
[ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Медиана AD и биссектриса CE прямоугольного треугольника ABC  (∠B = 90°)  пересекаются в точке M.
Найдите площадь треугольника ABC, если  CM = 8,  ME = 5.

Прислать комментарий     Решение

Задача 111684

Темы:   [ Удвоение медианы ]
[ Признаки и свойства параллелограмма ]
[ Против большей стороны лежит больший угол ]
Сложность: 3+
Классы: 8,9

Сережа нарисовал треугольник ABC и провёл в нем медиану AD. Затем он сообщил Илье, какова в этом треугольнике длина медианы AD и какова длина стороны AC. Илья, исходя из этих данных, доказал утверждение: угол CAB тупой, а угол DAB острый. Найдите отношение  AD : AC  (и докажите для любого треугольника с таким отношением утверждение Ильи).

Прислать комментарий     Решение

Задача 116926

Темы:   [ Удвоение медианы ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

В треугольнике ABC медиана, проведённая из вершины A к стороне BC, в четыре раза меньше стороны AB и образует с ней угол 60°. Найдите угол А.

Прислать комментарий     Решение

Задача 53514

Темы:   [ Удвоение медианы ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Найдите площадь треугольника, если две его стороны равны 1 и $ \sqrt{15}$, а медиана, проведённая к третьей, равна 2.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 60]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .