Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Два многочлена  P(x) = x4 + ax³ + bx² + cx + d  и  Q(x) = x² + px + q  принимают отрицательные значения на некотором интервале I длины более 2, а вне I – неотрицательны. Докажите, что найдётся такая точка x0, что  P(x0) < Q(x0).

Вниз   Решение


Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.

ВверхВниз   Решение


По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю.

ВверхВниз   Решение


Кузнечик прыгает по числовой прямой, на которой отмечены точки $-a$ и $b$. Известно, что $a$ и $b$ — положительные числа, а их отношение иррационально. Если кузнечик находится в точке, которая ближе к $-a$, то он прыгает вправо на расстояние, равное $a$. Если же он находится в середине отрезка $[-a;b]$ или в точке, которая ближе к $b$, то он прыгает влево на расстояние, равное $b$. Докажите, что независимо от своего начального положения кузнечик в некоторый момент окажется от точки 0 на расстоянии, меньшем $10^{-6}$.

ВверхВниз   Решение


Школьный чемпионат по настольному теннису проводили по олимпийской системе. Победитель выиграл шесть партий. Сколько участников турнира выиграло игр больше, чем проиграло? (На турнире по олимпийской системе участников разбивают на пары. Те, кто проиграл игру в первом туре, выбывают. Тех, кто выиграл в первом туре, снова разбивают на пары. Те, кто проиграл во втором туре, выбывают и т. д. В каждом туре для каждого участника нашлась пара.)

ВверхВниз   Решение


Произведение квадратных трёхчленов  x² + a1x + b1x² + a2x + b2,  ...,  x² + anx + bn  равно многочлену  P(x) = x2n + c1x2n–1 + c2x2n–2 + ... + c2n–1x + c2n,  где коэффициенты  c1, c2, ..., c2n  положительны. Докажите, что для некоторого k  (1 ≤ k ≤ n)  коэффициенты ak и bk положительны.

ВверхВниз   Решение


Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля?  ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.)

ВверхВниз   Решение


На продолжении диаметра AB окружности отложен отрезок BC , равный диаметру. Прямая, проходящая через точку C , касается окружности в точке M . Найдите площадь треугольника ACM , если радиус окружности равен R .

ВверхВниз   Решение


Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 182]      



Задача 66508

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 4,5,6,7

Разрежьте фигуру, показанную на рисунке, на четыре одинаковые части.

Прислать комментарий     Решение


Задача 98382

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Барон Мюнхгаузен утверждает, что смог разрезать некоторый равнобедренный треугольник на три треугольника так, что из любых двух можно сложить равнобедренный треугольник. Не хвастает ли барон?

Прислать комментарий     Решение

Задача 116859

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 5,6

Разрежьте фигуру, изображенную на рисунке, на три части так, чтобы в каждой из частей была снежинка и из этих частей можно было бы сложить квадрат.

Прислать комментарий     Решение

Задача 117004

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Двоичная система счисления ]
Сложность: 3
Классы: 5,6,7

Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.

Прислать комментарий     Решение

Задача 35042

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9,10

Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников?
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 182]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .