ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Два многочлена P(x) = x4 + ax³ + bx² + cx + d и Q(x) = x² + px + q принимают отрицательные значения на некотором интервале I длины более 2, а вне I – неотрицательны. Докажите, что найдётся такая точка x0, что P(x0) < Q(x0).
Дана квадратная сетка на плоскости и треугольник с
вершинами в узлах сетки. Докажите, что тангенс любого угла в
треугольнике — число рациональное.
По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю. Кузнечик прыгает по числовой прямой, на которой отмечены точки $-a$ и $b$. Известно, что $a$ и $b$ — положительные числа, а их отношение иррационально. Если кузнечик находится в точке, которая ближе к $-a$, то он прыгает вправо на расстояние, равное $a$. Если же он находится в середине отрезка $[-a;b]$ или в точке, которая ближе к $b$, то он прыгает влево на расстояние, равное $b$. Докажите, что независимо от своего начального положения кузнечик в некоторый момент окажется от точки 0 на расстоянии, меньшем $10^{-6}$. Школьный чемпионат по настольному теннису проводили по олимпийской системе. Победитель выиграл шесть партий. Сколько участников турнира выиграло игр больше, чем проиграло? (На турнире по олимпийской системе участников разбивают на пары. Те, кто проиграл игру в первом туре, выбывают. Тех, кто выиграл в первом туре, снова разбивают на пары. Те, кто проиграл во втором туре, выбывают и т. д. В каждом туре для каждого участника нашлась пара.) Произведение квадратных трёхчленов x² + a1x + b1, x² + a2x + b2, ..., x² + anx + bn равно многочлену P(x) = x2n + c1x2n–1 + c2x2n–2 + ... + c2n–1x + c2n, где коэффициенты c1, c2, ..., c2n положительны. Докажите, что для некоторого k (1 ≤ k ≤ n) коэффициенты ak и bk положительны. Для игры в "Морской бой" на поле 8×8 клеток расставили 12 "двухпалубных" кораблей. Обязательно ли останется место для "трёхпалубного" корабля? ("Двухпалубный" корабль – прямоугольник 1×2, а "трёхпалубный" – 1×3. Корабли могут соприкасаться, но накладываться друг на друга не должны.) На продолжении диаметра AB окружности отложен отрезок BC , равный диаметру. Прямая, проходящая через точку C , касается окружности в точке M . Найдите площадь треугольника ACM , если радиус окружности равен R . Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 182]
Разрежьте фигуру, показанную на рисунке, на четыре одинаковые части.
Барон Мюнхгаузен утверждает, что смог разрезать некоторый равнобедренный треугольник на три треугольника так, что из любых двух можно сложить равнобедренный треугольник. Не хвастает ли барон?
Разрежьте фигуру, изображенную на рисунке, на три части так, чтобы в каждой из частей была снежинка и из этих частей можно было бы сложить квадрат.
Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.
Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 182]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке