ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29. Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если AB = c, AM = m и AN = n. В связном графе степени четырёх вершин равны 3, а степени остальных вершин равны 4. В прямоугольном треугольнике ABC (∠B = 90°) проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что OB1 = OB2. В стране 64 города, некоторые пары из них соединены дорогой, но нам неизвестно, какие именно. Можно выбрать любую пару городов и получить ответ на вопрос “есть ли дорога между ними?”. Нужно узнать, можно ли в этой стране добраться от любого города до любого другого, двигаясь по дорогам. Докажите, что не существует алгоритма, позволяющего сделать это менее чем за 2016 вопросов. Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок). а) Докажите, что производящая функция последовательности чисел Фибоначчи
F(x) = F0 + F1x + F2x² + ... + Fnxn + ... может быть записана в виде б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578. Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов. Лёша нарисовал геометрическую картинку, обведя четыре раза свой пластмассовый прямоугольный треугольник, прикладывая короткий катет к гипотенузе и совмещая вершину острого угла с вершиной прямого. Оказалось, что "замыкающий" пятый треугольник – равнобедренный (см. рис., равны именно отмеченные стороны). Найдите острые углы Лёшиного треугольника? Точка D – середина гипотенузы АВ прямоугольного треугольника ABC, ∠ВАС = 35°. Точка B1 симметрична точке B относительно прямой СD. На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках? В стране Мара расположено несколько замков. Из каждого замка ведут три дороги. Из какого-то замка выехал рыцарь. Странствуя по дорогам, он из каждого замка, стоящего на его пути, поворачивает либо направо, либо налево по отношению к дороге, по которой приехал. Рыцарь никогда не сворачивает в ту сторону, в которую он свернул перед этим. Доказать, что когда-нибудь он вернётся в исходный замок. Докажите, что в плоском графе есть вершина, степень которой не превосходит 5. |
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 1008]
Докажите, что в любом связном графе можно удалить вершину вместе со всеми выходящими из нее рёбрами так, чтобы он остался связным.
В стране 100 городов, некоторые из которых соединены авиалиниями. Известно, что от каждого города можно долететь до любого другого (возможно, с пересадками). Докажите, что можно побывать во всех городах, совершив не более а) 198 перёлетов; б) 196 перелётов.
Докажите, что в плоском графе есть вершина, степень которой не превосходит 5.
В некоторой стране каждые два города соединены либо авиалинией, либо железной дорогой. Докажите, что
Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов.
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 1008]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке