Страница:
<< 113 114 115 116
117 118 119 >> [Всего задач: 1221]
|
|
Сложность: 4- Классы: 9,10,11
|
В вершинах правильного 12-угольника расставлены числа 1 и –1 так, что во всех вершинах, кроме одной, стоят единицы. Разрешается изменять знак в любых k подряд идущих вершинах. Можно ли такими операциями добиться того, чтобы единственное число –1 сдвинулось в соседнюю с исходной вершину, если а) k = 3; б) k = 4; в) k = 6.
Решите уравнение a² + b² + c² + d² – ab – bc – cd – d + 2/5 = 0.
|
|
Сложность: 4- Классы: 7,8,9,10
|
Колода из 36 карт
сложена так, что через четыре карты
масть повторяется. Несколько карт сверху сняли, не
перекладывая перевернули и вставили
произвольным образом (не обязательно подряд)
между оставшимися. После этого колоду разделили на
9 стопок по 4 идущие подряд карты. Докажите,
что в каждой из этих
стопок встретится по одной карте каждой масти.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Можно ли расставить во всех точках плоскости с целыми координатами
натуральные числа так, чтобы каждое натуральное число стояло в какой-нибудь
точке, и чтобы на каждой прямой, проходящей через две точки с целыми координатами, но не проходящей через начало координат, расстановка чисел была периодической?
ABCDEF – число из шести цифр. Все они разные и расположены слева направо в возрастающем порядке. Число это – полный квадрат.
Определите, какое это число.
Страница:
<< 113 114 115 116
117 118 119 >> [Всего задач: 1221]