ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Каждая из 9 прямых разбивает квадрат на два четырхугольника, площади которых относятся как 2:3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку. Решение |
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 460]
В трапеции CDEF ( DECF) известно, что CF = 2 . DE. На сторонах CD и EF взяты соответственно точки K и L, CK : KD = 3 : 2, EL : LF = 5 : 3. В каком отношении прямая KL делит площадь трапеции?.
Точка F лежит на продолжении стороны BC параллелограмма ABCD за точку C. Отрезок AF пересекает диагональ BD в точке E, а сторону CD – в точке G. Известно, что AE = 2 и GF = 3. Найдите отношение площадей треугольников BAE и EDG.
На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая отрезок AB в точке D. Найдите отношение площадей треугольников ABC и BCD, если известно, что AC = 15, BC = 20 и ABC = ACD.
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 460] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|