Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что из боковых граней четырёхугольной пирамиды, основанием которой служит параллелограмм, можно составить треугольную пирамиду, причём её объём вдвое меньше объёма исходной четырёхугольной пирамиды.

Вниз   Решение


Окружность, проходящая через вершины $B$ и $D$ четырехугольника $ABCD$, пересекает его стороны $AB$, $BC$, $CD$ и $DA$ в точках $K$, $L$, $M$ и $N$ соответственно. Окружность, проходящая через точки $K$ и $M$, пересекает прямую $AC$ в точках $P$ и $Q$. Докажите, что точки $L$, $N$, $P$ и $Q$ лежат на одной окружности.

ВверхВниз   Решение


а) На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, отличные от вершин треугольника. Докажите, что описанные окружности треугольников  AB1C1, A1BC1 и A1B1C пересекаются в одной точке.
б) Точки A1, B1 и C1 перемещаются по прямым BC, CA и AB так, что все треугольники A1B1C1 подобны одному и тому же треугольнику. Докажите, что точка пересечения описанных окружностей треугольников  AB1C1, A1BC1 и A1B1C остается при этом неподвижной. (Треугольники предполагаются не только подобными, но и одинаково ориентированными.)

ВверхВниз   Решение


В треугольник, у которого основание равно 30, а высота – 10, вписан прямоугольный равнобедренный треугольник так, что его гипотенуза параллельна основанию данного треугольника, а вершина прямого угла лежит на этом основании. Найдите гипотенузу.

ВверхВниз   Решение


Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 145]      



Задача 34996

Темы:   [ Площадь и ортогональная проекция ]
[ Куб ]
Сложность: 3
Классы: 10,11

Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости.

Прислать комментарий     Решение

Задача 87595

Темы:   [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Угол между плоскостями равен α . Найдите площадь ортогональной проекции правильного шестиугольника со стороной 1, лежащего в одной из плоскостей, на другую плоскость.
Прислать комментарий     Решение


Задача 87596

Темы:   [ Площадь и ортогональная проекция ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Стороны треугольника равны 5, 6 и 7. Найдите площадь ортогональной проекции треугольника на плоскость, которая образует с плоскостью треугольника угол, равный наименьшему углу этого треугольника.
Прислать комментарий     Решение


Задача 87599

Темы:   [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Отрезки AD , BD и CD попарно перпендикулярны. Известно, что площадь треугольника ABC равна S , а площадь треугольника ABD равна Q . Найдите площадь ортогональной проекции треугольника ABD на плоскость ABC .
Прислать комментарий     Решение


Задача 87602

Темы:   [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

В пирамиде ABCD двугранные углы с рёбрами AB , BC и CA равны α1 , α2 и α3 соответственно, а площади треугольников ABD , BCD и CAD равны соответственно S1 , S2 и S3 . Площадь треугольника ABC равна S . Докажите, что S = S1 cos α1 + S2 cos α2 + S3 cos α3 (некоторые из углов α1 , α2 и α3 могут быть тупыми).
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 145]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .