Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Докажите, что из боковых граней четырёхугольной пирамиды, основанием которой служит параллелограмм, можно составить треугольную пирамиду, причём её объём вдвое меньше объёма исходной четырёхугольной пирамиды.

Вниз   Решение


Окружность, проходящая через вершины $B$ и $D$ четырехугольника $ABCD$, пересекает его стороны $AB$, $BC$, $CD$ и $DA$ в точках $K$, $L$, $M$ и $N$ соответственно. Окружность, проходящая через точки $K$ и $M$, пересекает прямую $AC$ в точках $P$ и $Q$. Докажите, что точки $L$, $N$, $P$ и $Q$ лежат на одной окружности.

ВверхВниз   Решение


а) На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, отличные от вершин треугольника. Докажите, что описанные окружности треугольников  AB1C1, A1BC1 и A1B1C пересекаются в одной точке.
б) Точки A1, B1 и C1 перемещаются по прямым BC, CA и AB так, что все треугольники A1B1C1 подобны одному и тому же треугольнику. Докажите, что точка пересечения описанных окружностей треугольников  AB1C1, A1BC1 и A1B1C остается при этом неподвижной. (Треугольники предполагаются не только подобными, но и одинаково ориентированными.)

ВверхВниз   Решение


В треугольник, у которого основание равно 30, а высота – 10, вписан прямоугольный равнобедренный треугольник так, что его гипотенуза параллельна основанию данного треугольника, а вершина прямого угла лежит на этом основании. Найдите гипотенузу.

ВверхВниз   Решение


Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости.

ВверхВниз   Решение


Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей.

ВверхВниз   Решение


Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на одной прямой (Папп).

ВверхВниз   Решение


Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных?

ВверхВниз   Решение


Докажите, что прямая, проходящая через середины оснований трапеции, разбивает её на две равновеликие части.

ВверхВниз   Решение


Внутри треугольника ABC взята точка X. Прямые AX, BX и CX пересекают стороны треугольника в точках A1, B1 и C1. Докажите, что если описанные окружности треугольников AB1C1, A1BC1 и A1B1C пересекаются в точке X, то X — точка пересечения высот треугольника ABC.

ВверхВниз   Решение


На листе бумаги нарисован выпуклый многоугольник M периметра P и площади S. Закрасили каждый круг радиуса R с центром в каждой точке, лежащей внутри этого многоугольника. Найдите площадь закрашенной фигуры.

ВверхВниз   Решение


Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7.  Хорды AD и BC продолжены до пересечения в точке M.
Найдите угол AMB.

ВверхВниз   Решение


Угол между плоскостями равен α . Найдите площадь ортогональной проекции правильного шестиугольника со стороной 1, лежащего в одной из плоскостей, на другую плоскость.

ВверхВниз   Решение


В треугольнике ABC сторона BC равна полусумме двух других сторон. Доказать, что биссектриса угла A перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника.

ВверхВниз   Решение


Стороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на расстояние d = 1 во внешнюю сторону. Доказать, что площадь многоугольника увеличится по крайней мере на 15.

ВверхВниз   Решение


Четыре дома расположены по окружности. Где надо вырыть колодец, чтобы сумма расстояний от домов до колодца была наименьшей?

ВверхВниз   Решение


Периметр треугольника ABC равен 8. В треугольник вписана окружность и к ней проведена касательная, параллельная стороне AB. Отрезок этой касательной, заключённый между сторонами AC и CB, равен 1. Найдите сторону AB.

ВверхВниз   Решение


На трех отрезках OA, OB и OC одинаковой длины (точка B лежит внутри угла AOC) как на диаметрах построены окружности. Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O, равна половине площади (обычного) треугольника ABC.

ВверхВниз   Решение


Точка M лежит на описанной окружности треугольника ABCR — произвольная точка. Прямые AR, BR и CR пересекают описанную окружность в точках A1, B1 и C1. Докажите, что точки пересечения прямых MA1 и BCMB1 и CAMC1 и AB лежат на одной прямой, проходящей через точку R.

ВверхВниз   Решение


Многоугольник имеет центр симметрии O. Докажите, что сумма расстояний до вершин минимальна для точки O.

ВверхВниз   Решение


Внутри угла расположены три окружности S1, S2, S3, каждая из которых касается двух сторон угла, причем окружность S2 касается внешним образом окружностей S1 и S3. Известно, что радиус окружности S1 равен 1, а радиус окружности S3 равен 9. Чему равен радиус окружности радиус окружности S2?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 35183

Тема:   [ Гомотетичные окружности ]
Сложность: 3
Классы: 9,10

Внутри угла расположены три окружности S1, S2, S3, каждая из которых касается двух сторон угла, причем окружность S2 касается внешним образом окружностей S1 и S3. Известно, что радиус окружности S1 равен 1, а радиус окружности S3 равен 9. Чему равен радиус окружности радиус окружности S2?
Прислать комментарий     Решение


Задача 55757

Тема:   [ Гомотетичные окружности ]
Сложность: 3
Классы: 8,9

Докажите, что при гомотетии окружность переходит в окружность.

Прислать комментарий     Решение


Задача 35400

Тема:   [ Гомотетичные окружности ]
Сложность: 3+
Классы: 10,11

Внутри угла расположены две окружности с центрами A, B, которые касаются друг друга и сторон угла. Докажите, что окружность с диаметром AB касается сторон угла.
Прислать комментарий     Решение


Задача 35035

Темы:   [ Гомотетичные окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 4-
Классы: 9,10

На плоскости дана окружность S и фиксирована некоторая дуга AСB (С - точка на дуге AB) этой окружности. Некоторая окружность S' касается хорды AB в точке P и дуги ACB в точке Q. Докажите, что прямые PQ проходят через фиксированную точку плоскости независимо от выбора окружности S'.
Прислать комментарий     Решение


Задача 57989

Тема:   [ Гомотетичные окружности ]
Сложность: 4+
Классы: 9

а) Вписанная окружность треугольника ABC касается стороны AC в точке D, DM — ее диаметр. Прямая BM пересекает сторону AC в точке K. Докажите, что AK = DC.
б) В окружности проведены перпендикулярные диаметры AB и CD. Из точки M, лежащей вне окружности, проведены касательные к окружности, пересекающие прямую AB в точках E и H, а также прямые MC и MD, пересекающие прямую AB в точках F и K. Докажите, что EF = KH.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .