Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Постройте точки X и Y на сторонах AB и BC треугольника ABC так, что AX = BY и XY| AC.

Вниз   Решение


Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

ВверхВниз   Решение


С помощью циркуля и линейки проведите через данную точку, лежащую внутри данного угла, прямую, отсекающую от данного угла треугольник заданного периметра.

ВверхВниз   Решение


Каждый из квадратных трёхчленов $P(x)$, $Q(x)$ и $P(x)+Q(x)$ с действительными коэффициентами имеет кратный корень. Обязательно ли все эти корни совпадают?

ВверхВниз   Решение


Докажите, что если в остроугольном треугольнике  ha = lb = mc, то этот треугольник равносторонний.

ВверхВниз   Решение


Известно, что  35! = 10333147966386144929*66651337523200000000.  Найдите цифру, заменённую звездочкой.

ВверхВниз   Решение


Доказать: произведение
  а) двух нечётных чисел нечётно;
  б) чётного числа с любым целым числом чётно.

ВверхВниз   Решение


Доказать: сумма
  а) любого количества чётных слагаемых чётна;
  б) чётного количества нечётных слагаемых чётна;
  в) нечётного количества нечётных слагаемых нечётна.

ВверхВниз   Решение


Докажите, что из точки A, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от A до точек касания) равны.

ВверхВниз   Решение


Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны и противоположно ориентированы. Докажите, что тогда $ \Im$abcd = 0.

ВверхВниз   Решение


На прямой даны четыре точки A, B, C, D в указанном порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под равными углами.

ВверхВниз   Решение


Полтора землекопа выкопали за полтора часа полторы ямы. Сколько ям выкопают два землекопа за два часа?

ВверхВниз   Решение


Сколько существует натуральных чисел, меньших тысячи, которые не делятся ни на 5, ни на 7?

ВверхВниз   Решение


Семь девяток выписали подряд: 9 9 9 9 9 9 9. Поставьте между некоторыми из них знаки «+» или «−», чтобы получившееся выражение равнялось 1989.

ВверхВниз   Решение


Постройте треугольник по сторонам a и b, если известно, что угол против одной из них в три раза больше угла против другой.

ВверхВниз   Решение


Стороны треугольника равны a, b, c. Известно, что a3=b3+c3. Докажите, что этот треугольник остроугольный.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 35382

Темы:   [ Неравенства для остроугольных треугольников ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 9,10

Стороны треугольника равны a, b, c. Известно, что a3=b3+c3. Докажите, что этот треугольник остроугольный.
Прислать комментарий     Решение


Задача 57485

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что для остроугольного треугольника

$\displaystyle {\frac{m_a}{h_a}}$ + $\displaystyle {\frac{m_b}{h_b}}$ + $\displaystyle {\frac{m_c}{h_c}}$ $\displaystyle \leq$ 1 + $\displaystyle {\frac{R}{r}}$.


Прислать комментарий     Решение

Задача 57486

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что для остроугольного треугольника

$\displaystyle {\frac{1}{l_a}}$ + $\displaystyle {\frac{1}{l_b}}$ + $\displaystyle {\frac{1}{l_c}}$ $\displaystyle \leq$ $\displaystyle \sqrt{2}$$\displaystyle \left(\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right.$$\displaystyle {\frac{1}{a}}$ + $\displaystyle {\frac{1}{b}}$ + $\displaystyle {\frac{1}{c}}$$\displaystyle \left.\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right)$.


Прислать комментарий     Решение

Задача 57487

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что если треугольник не тупоугольный, то  ma + mb + mc $ \geq$ 4R.
Прислать комментарий     Решение


Задача 57488

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что если в остроугольном треугольнике  ha = lb = mc, то этот треугольник равносторонний.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .