ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников? Длина ребра правильного тетраэдра равна a. Через одну из вершин тетраэдра проведено треугольное сечение. Дан треугольник ABC. Найдите все такие точки P,
что площади треугольников ABP, BCP и ACP равны.
Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.) Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить? Сколькими способами можно выбрать 4 краски из имеющихся 7 различных? Боковая грань правильной четырёхугольной пирамиды образует с плоскостью основания угол 45o . Найдите угол между противоположными боковыми гранями. Выразите длину симедианы AS через длины сторон
треугольника ABC.
Правильный треугольник разрезать на четыре части так, чтобы из них можно было сложить квадрат. |
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 1352]
Разрежьте фигуру, изображенную на рисунке, на три части так, чтобы в каждой из частей была снежинка и из этих частей можно было бы сложить квадрат.
При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?
Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.
От пирога, имеющего форму выпуклого многоугольника, разрешается отрезать треугольный кусок ABC, где A - некоторая вершина, а B и C - точки, лежащие строго внутри сторон, имеющих вершину A. Вначале пирог имеет форму квадрата. В центре этого квадрата расположена изюминка. Докажите, что ни на каком шаге от пирога нельзя отрезать кусок, содержащий изюминку.
Существует ли треугольник с вершинами в узлах клетчатой бумаги, каждая сторона которого длиннее 100 клеточек, а площадь меньше площади одной клеточки?
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 1352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке