ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На плоскости даны n>1 точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?

Вниз   Решение


Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
  а) по 2 монеты;
  б) по 3 монеты;
  в) по 4 монеты;
  г) по 5 монет;
  д) по 6 монет;
  е) по 7 монет?
(Разрешается класть монеты одну на другую.)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 4229]      



Задача 32041

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 5,6,7,8

В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки?

Прислать комментарий     Решение

Задача 35583

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 2
Классы: 7,8

100 фишек выставлены в ряд. Разрешено менять местами две фишки, стоящие через одну фишку.
Можно ли с помощью таких операций переставить все фишки в обратном порядке?

Прислать комментарий     Решение

Задача 35679

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 7,8

Докажите, что найдутся двадцать москвичей, имеющих одинаковое число волос на голове.
(Известно, что у человека на голове не более 400000 волос, а в Москве не менее 8 миллионов жителей.)

Прислать комментарий     Решение

Задача 35707

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7,8

Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
  а) по 2 монеты;
  б) по 3 монеты;
  в) по 4 монеты;
  г) по 5 монет;
  д) по 6 монет;
  е) по 7 монет?
(Разрешается класть монеты одну на другую.)

Прислать комментарий     Решение

Задача 79639

Тема:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2
Классы: 6,7

В ковре размером 4 х 4 метра моль проела 15 дырок. Всегда ли можно вырезать коврик размером 1х1, не содержащий внутри дырок? (Дырки считаются точечными).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 4229]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .