ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из чисел 1, 2, ... , 49, 50 выбрали 26 чисел. Обязательно ли среди них найдутся два числа, отличающиеся друг от друга на 1?

   Решение

Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 1221]      



Задача 35448

Темы:   [ Модуль числа ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Докажите, что система неравенств |x|<|y-z|, |y|<|z-x|, |z|<|x-y| не имеет решений.
Прислать комментарий     Решение


Задача 35523

Темы:   [ Итерации ]
[ Обратный ход ]
Сложность: 3
Классы: 8,9

После ввода в строй третьего транспортного кольца на нем запланировали установить ровно 1998 светофоров. Каждую минуту они одновременно меняют цвет по следующему правилу: Каждый светофор меняет цвет в зависимости от цвета двух соседних (справа и слева), причем 1) если два соседних светофора горели одним цветом, то светофор между ними загорается этим же цветом. 2) если два соседних светофора горели разными цветами, то светофор между ними загорается третьим цветом. В начальный момент все светофоры кроме одного были зеленые, а один - красный. Оппоненты Лужкова заявили, что через какое-то время все светофоры будут гореть желтым цветом. Правы ли они?
Прислать комментарий     Решение


Задача 35664

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

На доске записано число 123456789. У написанного числа выбираются две соседние цифры, если ни одна из них не равна 0, из каждой цифры вычитается по 1, и выбранные цифры меняются местами (например, из 123456789 можно за одну операцию получить 123436789). Какое наименьшее число может быть получено в результате таких операций?

Прислать комментарий     Решение

Задача 35719

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9

Из чисел 1, 2, ... , 49, 50 выбрали 26 чисел. Обязательно ли среди них найдутся два числа, отличающиеся друг от друга на 1?
Прислать комментарий     Решение


Задача 35802

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Подсчет двумя способами ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3
Классы: 9

Радиус вписанной окружности треугольника равен 1. Докажите, что наименьшая высота этого треугольника не превосходит 3.
Прислать комментарий     Решение


Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .