Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Автор: Шноль Д.Э.

Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A?

Вниз   Решение


Каковы первые четыре цифры числа  11 + 2² + 3³ + ... + 999999 + 10001000?

ВверхВниз   Решение


Имеется бесконечная арифметическая прогрессия с натуральными членами. Доказать, что найдётся член, в котором есть 100 девяток подряд.

ВверхВниз   Решение


Докажите, что если p – простое число, то   (a + b)pap – bp   делится на  p при любых целых a и b.

ВверхВниз   Решение


В фотоателье залетели 20 птиц – 8 скворцов, 7 трясогузок и 5 дятлов. Каждый раз, как только фотограф щелкнет затвором фотоаппарата, какая-то одна из птичек улетит (насовсем). Сколько кадров сможет сделать фотограф, чтобы быть уверенным: у него останется не меньше четырёх птиц одного вида, и не меньше трёх – другого?

ВверхВниз   Решение


Докажите, что если числа N и 5N имеют одинаковую сумму цифр, то N делится на 9.

ВверхВниз   Решение


Даны m = 2n + 1 точек — середины сторон m-угольника. Постройте его вершины.

ВверхВниз   Решение


На сторонах остроугольного треугольника ABC вне него построены квадраты CAKL и CBMN. Прямая CN пересекает отрезок AK в точке X, а прямая CL пересекает отрезок BM в точке Y. Точка P, лежащая внутри треугольника ABC, является точкой пересечения описанных окружностей треугольников KXN и LYM. Точка S – середина отрезка AB. Докажите, что  ∠ACS = ∠BCP.

ВверхВниз   Решение


Для передачи сообщений по телеграфу каждая буква русского алфавита (Е и Ё отождествлены) представляется в виде пятизначной комбинации из нулей и единиц, соответствующих двоичной записи номера данной буквы в алфавите (нумерация букв начинается с нуля). Например, буква А представляется в виде 00000, буква Б - 00001, буква Ч – 10111, буква Я – 11111. Передача пятизначной комбинации производится по кабелю, содержащему пять проводов. Каждый двоичный разряд передается по отдельному проводу. При приеме сообщения Криптоша перепутал провода, поэтому вместо переданного слова получен набор букв ЭАВЩОЩИ. Найдите переданное слово.

ВверхВниз   Решение


Через данную точку проведите окружность, касающуюся данной прямой и данной окружности.

ВверхВниз   Решение


Докажите формулу Эйлера: O1O22 = R2-2rR , где O1 , O2 — центры соответственно вписанной и описанной окружностей треугольника, r , R — радиусы этих окружностей.

Вверх   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 401]      



Задача 53711

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 8,9

AB — диаметр окружности, CD — хорда этой окружности. Перпендикуляры к хорде, проведённые через её концы C и D, пересекают прямую AB в точках K и M соответственно. Докажите, что AK = BM.

Прислать комментарий     Решение


Задача 55776

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Диаметр, хорды и секущие ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте хорду данной окружности, которую два данных радиуса разделили бы на три равные части.

Прислать комментарий     Решение


Задача 52453

Темы:   [ Окружности (построения) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Построение окружностей ]
Сложность: 4
Классы: 8,9

Через данную точку проведите окружность, касающуюся данной прямой и данной окружности.
Прислать комментарий     Решение


Задача 52464

 [Формула Эйлера]
Темы:   [ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
Сложность: 4
Классы: 8,9

Докажите формулу Эйлера: O1O22 = R2-2rR , где O1 , O2 — центры соответственно вписанной и описанной окружностей треугольника, r , R — радиусы этих окружностей.
Прислать комментарий     Решение


Задача 52482

Темы:   [ Вспомогательная окружность ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 8,9

Основание CD, диагональ BD и боковая сторона AD трапеции ABCD равны p. Боковая сторона BC равна q. Найдите диагональ AC.

Прислать комментарий     Решение


Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .