ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Три окружности имеют общую точку M и попарно пересекаются в точках P, Q, R. Через произвольную точку A одной из окружностей, лежащую на дуге PQ, не содержащей точки M, и точки P и Q, в которых окружность пересекает две другие окружности, проведены прямые, пересекающие эти же две окружности в точках B и C. Докажите, что точки B, C и R лежат на одной прямой.

   Решение

Задачи

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 829]      



Задача 116384

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 4-
Классы: 8,9

На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.

Прислать комментарий     Решение

Задача 116390

Темы:   [ Задачи на движение ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 4-
Классы: 8,9

Автор: Шень А.Х.

По прямому шоссе со скоростью 60 км в час едет машина. Недалеко от шоссе стоит параллельный ему 100-метровый забор. Каждую секунду пассажир машины измеряет угол, под которым виден забор. Докажите, что сумма всех измеренных им углов меньше 1100°.

Прислать комментарий     Решение

Задача 52491

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9

Три окружности имеют общую точку M и попарно пересекаются в точках P, Q, R. Через произвольную точку A одной из окружностей, лежащую на дуге PQ, не содержащей точки M, и точки P и Q, в которых окружность пересекает две другие окружности, проведены прямые, пересекающие эти же две окружности в точках B и C. Докажите, что точки B, C и R лежат на одной прямой.

Прислать комментарий     Решение


Задача 67209

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 8,9,10,11

На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$.
Прислать комментарий     Решение


Задача 53467

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Ломаные ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены медианы AA1, BB1, CC1 и высоты AA2, BB2, CC2.
Докажите, что длина ломаной A1B2C1A2B1C2A1 равна периметру треугольника ABC.

Прислать комментарий     Решение

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .