ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Три окружности имеют общую точку M и попарно пересекаются в точках P, Q, R. Через произвольную точку A одной из окружностей, лежащую на дуге PQ, не содержащей точки M, и точки P и Q, в которых окружность пересекает две другие окружности, проведены прямые, пересекающие эти же две окружности в точках B и C. Докажите, что точки B, C и R лежат на одной прямой. Решение |
Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 829]
На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.
По прямому шоссе со скоростью 60 км в час едет машина. Недалеко от шоссе стоит параллельный ему 100-метровый забор. Каждую секунду пассажир машины измеряет угол, под которым виден забор. Докажите, что сумма всех измеренных им углов меньше 1100°.
Три окружности имеют общую точку M и попарно пересекаются в точках P, Q, R. Через произвольную точку A одной из окружностей, лежащую на дуге PQ, не содержащей точки M, и точки P и Q, в которых окружность пересекает две другие окружности, проведены прямые, пересекающие эти же две окружности в точках B и C. Докажите, что точки B, C и R лежат на одной прямой.
В треугольнике ABC проведены медианы AA1, BB1, CC1 и высоты AA2, BB2, CC2.
Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|